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Abstract. This paper sheds light on a strong connection between Ad-
aBoost and several optimization algorithms for data mining. AdaBoost
has been the subject of much interests as an effective methodology for
classification task. AdaBoost repeatedly generates one hypothesis in each
round, and finally it is able to make a highly accurate prediction by tak-
ing a weighted majority vote on the resulting hypotheses. Freund and
Schapire have remarked that the use of simple hypotheses such as single-
test decision trees instead of huge trees would be promising for achieving
high accuracy and avoiding overfitting to the training data. One major
drawback of this approach however is that accuracies of simple individual
hypotheses may not always be high, hence demanding a way of comput-
ing more accurate (or, the most accurate) simple hypotheses efficiently.
In this paper, we consider several classes of simple but expressive hy-
potheses such as ranges and regions for numeric attributes, subsets of
categorical values, and conjunctions of Boolean tests. For each class, we
develop an efficient algorithm for choosing the optimal hypothesis.

1 Introduction

Classification has been a prominent subject of study in the machine learning and
data mining literature. Let x; denote a vector of values for attributes, which is
usually called a record or a tuple in the database community. Let y; denote the
objective Boolean value that is either 1 or 0. We call a record (x;,y;) positive
(resp. negative) if y; = 1 (y; = 0). Given (x1,¥1),...,(XN,ynN) as a training
dataset, classification aims at deriving rules that are capable of predicting the
objective value of y from x with a high probability.

For classification problems, decision trees are used mostly in practical applica-
tions. Recently, to further improve the prediction accuracy of existing classifiers,
boosting techniques have received much interest among the machine learning
and data mining communities [14]. A classifier is called a weak hypothesis if its
predication accuracy regarding the training dataset is at least better than 1/2.
A boosting algorithm tries to generate some weak hypotheses so that it makes
it possible to perform a highly accurate prediction by combining those weak
hypotheses. There have been many proposals for such boosting algorithms [14,



7]. Freund and Schapire presented the most successful algorithm, named “Ad-
aBoost”, that solved many of the practical difficulties of the earlier boosting
algorithms [9].

2 AdaBoost

The key idea behind AdaBoost is to maintain the record weights in the training
dataset. AdaBoost assumes the existence of a weak learner that is able to output
a weak hypothesis in a finite number of steps, though it is not always the case
in practice. To overcome this problem, we will propose efficient weak learners
that manage to output optimal hypotheses, but for the purpose of explanation,
we continue the discussion by assuming that weak hypotheses can always be
generated.

In each iteration AdaBoost calls on a weak learner to generate one weak hy-
pothesis by considering the weighted records as the training dataset and updates
the weights of the records to force the next call of the weak learner focus on the
mis-predicted records. In this way, we prepare a set of voters with different char-
acteristics. In the final step, we define the weight of each voter according to its
prediction accuracy in the training dataset, and we generate the final hypothesis
using a weighted majority vote.

2.1 Pseudo-code

We now present a pseudo-code for AdaBoost. First, the inputs to AdaBoost are
a training dataset {(x1,%1),...,(Xn,yn)}, the initial weights w} = 1/N (i =
1,...,N), a weak learner named WeakLearn, and the integer T specifying number
of iterations. AdaBoost repeats the following three steps for each t = 1,2, ... T

1. Calculate the distribution p! of each record (x;,y;) by normalizing weights

w!; namely,
pt = _ Wi
' Zi\il w;
2. Invoke WeakLearn to produce such a weak hypothesis h; : {x1,...,xny} —

{1,0} that the error € of h; is less than 1/2, where ¢, is defined:
N
e =30t Ihelxs) - il
i=1

Observe that |h(x;) — y;| = 1 if hy mis-predicts the objective value y;. Oth-
erwise, |h(x;) — yi| =0.

3. Set B = €/(1 — €;). Note that 3; < 1 since ¢ < 1/2. We then set the new
weight w!*! for each i = 1,..., N according to the formula:

i

t+1 gt gt 1P (xi) = il

w; - % Mt -



If h; mis-predicts the objective value y; of the i-th records (x;,y;), observe

that

gl he (i) =il _
and hence the weight does not change; namely w!t* = w!. Otherwise the
weight decreases, because wf“ < w!fB;. Put another way, the weights of
incorrectly predicted records relatively increase so that the weak learner can
focus on these “hard” records in the next step.

Lastly, AdaBoost outputs the final hypothesis hy that is a weighted majority
vote of T" weak hypotheses where the weight — In g, is associated with hypothesis
ht:
Jp— T
hy(x) = { Lif Zt:l(_ In B¢)he(x) > Zt:l(_ lnﬂt)%

0 otherwise.

2.2 Boosting Property

Freund and Schapire proved the following theorem, which is called the boosting
property:

Theorem 1. [9] Let € denote (ZZI\LI |hf(x:) — yil)/N, the error of the final hy-
pothesis. Then, )
e<IIL 2(e,(1—¢))2 1

The above theorem indicates that the error of the final hypothesis adapts
to the error of individual weak hypothesis. Since the error €, is less than 1/2,
2(er(1—¢;))? is strictly less than 1, and it approaches to 0 when the error €, gets
to be closer to 0. Thus, if most weak hypotheses are moderately accurate, the
error of the final hypothesis drops exponentially fast, minimizing the number of
iterations T efficiently.

2.3 Decision Stumps and Optimization

To design the weak learner of AdaBoost, in the literature, C4.5 has been fre-
quently used as a weak learner [3,8]. In [8] Freund and Schapire employed C4.5
to generate large decision trees, but they remarked that large decision trees were
a kind of overly complex weak hypothesis and thereby failed to perform well
against unseen test datasets.

This result led them to consider the other extreme class of decision trees,
single-test decision trees named decision stumps. Decision stumps, on the other
hand, are simple and hence may not be subject to overfitting to the training
datasets. However, Domingo and Watanabe [6] reported that in later rounds of
iterations in AdaBoost, the resulting decision stump is often too weak, yielding
a large number of very weak hypotheses for improving the prediction accuracy
of the final hypothesis.

One solution to overcome this problem is to select among decision stumps
the optimal one that minimizes the error, because Theorem 1 indicates that



the choice of highly accurate hypothesis enables sharp reduction of the error of
the final hypothesis. To further investigate this optimization problem, we here
introduce some new terms. Minimization of the error ¢; of the t-th hypothesis
h; is equivalent to maximization of the prediction accuracy 1 — €.

l—€= Z p§

{ilhe (xi)=y:}

= > P+ >

{ilhe (xi)=yi=1} {ilhe (xi)=yi =0}

= > P+ p- >

{ilhe (xi)=yi=1} {ily:=0} {ilhe (x:)=1,y;=0}
= > - oo+ >
{i|hs (x:)=1,y:=1} {i|he (x;)=1,y;=0} {i|ly;=0}
Since Y {ilys=0} pt is independent of the choice of hy, our goal is to maximize the
first term enclosed in the parentheses, which we will simplify using g! defined:
¢ [Pt oifh(x;)=1landy; =1
98 =\ —ptif he(x;) =L and y; = 0

Then,

(> ph- > = > g

{ilhe (x:)=1,y:=1} {ilhe(xi)=1,y:=0} {ilhe (xi)=1}
If h; outputs the correct answer to y;, gt is positive, thereby adding gain p!
to the prediction accuracy 1 — ¢,. Otherwise, p! is deducted from the accuracy.
We therefore call g¢ the accuracy gain (or gain, for short) of prediction when h,
outputs 1. Consequently, maximization of the accuracy 1 — ¢; is equivalent to
maximization of the sum of gains, 3", (x;)=1} 9i-

3 Main Results

We here present some optimization algorithms for selecting an optimal hypoth-
esis h; minimizing the sum of gains from a class of simple hypotheses. Classes
of our interest include ranges and regions for numeric attributes, subsets of cat-
egorical values, and conjunctions of Boolean tests.

3.1 Optimal Ranges
We here consider hypotheses h; such that

ht(l'l) =1 iff z; € [l,h]
Our goal is to compute an optimal range [/, h] that maximizes the accuracy gain

of hy; namely
max Z gl.
{ilzi€ll,h]}



Without loss of generality, we assume that x; are sorted in an ascending order
x1 < w9 < 23 < ..., which requires O(N log N)-time sorting cost though. If
some x;,...,T;+, are equal, we merge them in the sense that we take the sum
of gains gf + ...+ gf+k, assign the sum to x;, and rename the indexes so that all
indexes are consecutive; namely, 21 < 23 < .... Then, input the sequence of gains
gt, g%, ... to Kadena’s algorithm [4]. Given a sequence of M reals g1, 9s,- .., 9um,
Kadena’s algorithm computes an optimal range [s,¢] that maximizes } .., , g:
in O(M)-time. M is at most the number of records N but is typically much
smaller than N, and hence Kadena’s algorithm works in O(N)-time.

It is natural to consider the use of two or more disjoint ranges for maximizing
accuracy gain. Brin, Rastogi, and Shim presented an efficient way of computing
the optimal set of at most k ranges in O(kM)-time [5], which is a highly non-
trivial extension of Kadena’s algorithm.

3.2 Optimal Regions

We have discussed the advantage of using region splitting hypotheses of the form:
ht((mil R :L’ig)) =1 iff (CIZil R CIZZQ) c [’Ul, ’1)2] X [w1 R ’lUQ].

We here present how to efficiently compute an optimal rectangle R that maxi-
mizes the accuracy gain; namely,

IIIZLXE:{gi-t | ($i1;$i2) € R}

In order to limit the number of rectangles to a moderate number, we first divide
the domain of z;; (also, x;2) into M non-overlapping buckets such that their
union is equal to the original domain. M is at most the number of records NV
but is typically much smaller than N. Using those buckets, we divide the two
dimensional plane into M? pixels, and we represent a rectangle as a union of
those pixels. Although the number of rectangles is O(M*?), it is straightforward
to design an O(M?)-time (namely, O(N?)-time) algorithm by using Kadena’s
algorithm. The idea is that for each of »;C> pairs of rows, we apply Kadena’s
algorithm to calculate the optimal range of columns. Also, a subcubic time al-
gorithm that uses funny matrix multiplication [15] is also available.

We are then interested in the design of efficient algorithm for computing
more than one rectangles for maximizing the accuracy gain. However, Khanna,
Muthukrishnan and Paterson remark that the problem is NP-hard [11]. Brin,
Rastogi, and Shim present an approximation algorithm for this problem [5],
however the approximation is within a factor of i of the optimal solution. Thus
computing the optimal set of more than one rectangles is computationally in-
tractable.

So far we have been focusing on rectangles. In general there have been devel-
oped efficient algorithms for computing the optimized gain region among various
classes of two dimensional connected regions whose boundaries are more flexible
than those of rectangles. For instance, an z-monotone region is such a connected



region that the intersection with any column is undivided, and a rectilinear con-
vex region is such an x-monotone region that the intersection with any row is also
undivided. The optimized gain x-monotone (rectilinear convex, respectively) re-
gion can be computed in O(M?)-time [10] (in O(M?)-time [16]). Since M < N,
M in O(M?) and O(M?) can be replaced with N. The use of these regions is
expected to further improve the prediction accuracy of the final hypothesis.

3.3 Optimal Conjunctions

Given a dataset {(zi1,i2,...,%in,¥:) | = 1,..., N} such that z;; is Boolean
valued; that is, z;; € {0,1}. In this section, we consider hypotheses h; that are
conjunctions of simple tests on each attribute; that is;

ht((mihxiZ;---;min)) =1 iff Tij; = 1 N Nxgj, = 1. (].)

We are then interested in computing the optimal conjunction that maximizes
the gain. The number of conjunctions of the form (1) is ,Cps. If we treat M as
a variable, we can prove that the problem is NP-hard by reducing the problem
to the NP-completeness of the minimum set cover problem according to the line
suggested in [12,13].

In practice, it would be reasonable to limit the number M of conjuncts to
a small constant, say five. Then, the problem becomes to be tractable, but the
problem still demands an efficient way of computing the optimal conjunction
especially when the number of attributes n is fairly large.

Connection with Itemset Enumeration Problem We first remark that
the problem has a strong connection with itemset enumeration problem [1].
We then generalize the idea of Apriori algorithm [2] for computing the optimal
conjunction efficiently.

Let ay,as,...,a, be n items. We will identify a record with an itemset ac-
cording to the mapping ¢:

(f) : (m“,...,mm) — {aj | Tij = ].}
Ezample 1. ¢((1,0,1,1,0)) = {a1,as3,a4}. 1
We also regard the conjunction z;;, = 1A ... Az, =1as {aj,,...,a;,}

Ezample 2. We associate x;3 = 1 Az;4 = 1 with {as,as}. The property that the
record (1,0,1,1,0) satisfies ;3 = 1 A x4 = 1 can be rephrased by using words
of itemsets; namely, {a1,a3,as} D {as,as}. 1

In general, we have the following equivalence:
ht((milamﬂ; N 7ml’ﬂ)) =1
iff Tij; = 1/\.../\$i]'M =1

lff ¢(($i17$i2; e ;xzn)) 2 {ajl, e ,ajM}.



In what follows, let x; denote (x;1,x;2, - .., %), for simplicity. Now finding the
optimal conjunction of the form (1) that maximizes the sum of gains is equivalent
to the computation of the itemset I that maximizes

> g
{il¢(xi) 21}
Let us call the above sum of gains the gain of I, and let gain(I) denote the sum.
The gain of I may appear to be similar to the so-called support of I, which is
defined as [{i | ¢(x;) D I}|/N, where N is the number of all records. Thus one
may consider the possibility of applying the Apriori algorithm to the calculation
of the optimal itemset I that maximizes gain(I). To this end, however, Apriori
needs a major conversion.

Extending the Idea of Apriori Algorithm Let support(I) denote the sup-
port of I. The support is anti-monotone with respect to set-inclusion of itemsets;
that is, for any J D I, support(J) < support(I). The Apriori algorithm uses this
property to effectively prune away a substantial number of unproductive itemsets
from its search space. However, the gain is not anti-monotone; namely, J D I
does not always imply gain(J) < gain(I), because some g! could be negative.

We solve this problem by modifying the Apriori algorithm so that it is capable
of handling the anti-monotone gain function. Suppose that during the scan of
the lattice of itemsets beginning with smaller itemsets and continuing to larger
ones, we visit an itemset I. The following theorem presents a way of computing
a tight upper bound on gain(J) for any superset J of I.

Theorem 2. For any J D I,
winn< Y 4.
{ilp(x:)21,yi=1}
Proof. Recall
t_ pE ify, =1

9i = —ptify; =0.

Then,
gain(J)= > gi= > pi— >, P
{ilop(x:)DJ} {ilp(x:)2J,y:=1} {i|p(xi)DJ,yi=0}
Since p! > 0 and { | (xi) 2 Jyyi = 1} € i | 6(x) 2 I,y = 1},
> i< > ok
{il¢(x:)2J,y:=1} {ilp(xi)21,y;=1}

Then,

gain(J)= Y pi- > 1

{ilo(xi)2J,pi=1} {ilo(xi)2J,y:=0}

< > o i< > oo 1

{ilé(x:)2J,yi=1} {ilg(x:)21,y:=1}



Definition 1. Let u(I) denote the upper bound

g;-
{il6(x) 2T,y =1}

During the scan of the itemset lattice, we always maintain the temporarily
maximum gain among all the gains calculated so far and set it to 7. If u(I) < 7,
no superset of I gives a gain greater than or equal to 7, and hence we can safely
prune all supersets of I at once. On the other hand, if u(I) > 7, I is promising
in the sense that there might exist a superset J of I such that gain(J) > 7.

Definition 2. Suppose that 7 is given and fixed. An itemset is a k-itemset if it
contains exactly k items. An itemset I is promising if u(I) > 7. Let P, denote
the set of promising k-itemsets. il

Thus we will search P; U P, U... for the optimal itemset. Next, to accelerate
the generation of Py, we introduce a candidate set for Pj.

Definition 3. An itemset [ is potentially promising if every proper subset of [
is promising. Let @) denote the set of all potentially promising k-itemsets. il

The following theorem guarantees that @) is be a candidate set for Pj.

Theorem 3. Q. 2 P.. 1l

T :=0;
Q1 :={I|1is a l-itemset.}; k := 1;
repeat begin
If £ > 1, generate Q, from Pj_1;
For each I € Qy, scan all the records to compute u(I) and gain(I);
7 := max(7, max{gain(l)|I € Qr});
P,:={I€Q|ull)>1}; X :=Pe; k++;
end until X = ¢;
Return 7 with its corresponding itemset;

Fig. 1. AprioriGain for Computing the Optimal Itemset

The benefit of @y is that @ can be obtained from Pj,_; without scanning
all records that may reside in the secondary disk. To this end, we use the idea
of the apriori-gen function of the Apriori algorithm [2]; that is, we select two
members in Py_1, say I; and I», such that I; and I, share (k — 2) items in
common, and then check to see whether each (k — 1)-itemset included in I} U I,
belongs to Pj_1, which can be determined efficiently by organizing Pj_; as a
hash tree structure. We repeat this process to create Q. Figure 1 presents the
overall algorithm, which we call AprioriGain (Apriori for optimizing Gain).



3.4 Optimal Subsets of Categorical Values

We here suppose that x; itself denotes a single categorical value. Let {¢1,...,car}
be the domain of the categorical attribute, where M is at most the number of
records N but is typically much smaller than N. Typical hypotheses h; would
be of the form:

ht(l‘i) =1 iff T; = Cj.

Computing the optimal choice of ¢; that maximizes the accuracy gain is inex-
pensive. In practice, the number of categorical values M could be fairly large;
for instance, consider the number of countries in the world. In such cases, the
number of records satisfying x; = c¢; could be relatively small, thereby raising
the error of the hypothesis h;. One way to overcome this problem is to use a
subset S of {c1,co,...,cp} instead of a single value and to employ hypotheses
of the form:

he(z;) =1 iff z; €S.

Our goal is then to find S that maximizes the sum of gains ) ¢ gt. Although
the number of possible subsets of {ci, ca, ..., ca} is 2M, we are able to compute
the optimal subset S in O(M)-time. First, without loss of generality, we assume

that
DO ED DR I S

{ilzi=c1} {ilzi=c2} {ilei=cm}

Otherwise, we rename the indexes so that the above property is guaranteed. It
is easy to see the following property.

Theorem 4. Let S = {c¢; | X (;),,=¢,1 9i > 0}. S maximizes 37, 5 g;-

Thus we only need to find the maximum index k such that

> gi>o,

{ilei=cr}

returning S = {¢; | j = 1,...,k} as the answer. Consequently, the optimal
subset can be computed in O(M)-time (or, O(N)-time since M < N).

4 Discussion

To improve the prediction accuracy of AdaBoost, we have presented efficient al-
gorithms for several classes of simple but expressive hypotheses. In the literature,
boosting algorithms have been developed in the machine learning community,
while optimization algorithms for association rules and optimized ranges/regions
have been proposed and studied in the database and data mining communities.
This paper sheds light on a strong connection between AdaBoost and optimiza-
tion algorithms for data mining.
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