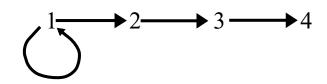
問合せ最適化 1 — 問合せ結果の包含関係

論理積問合せ

$$Q: H: -G_1 \& \dots \& G_n$$

- ルールを使って問合せを表現.
- 本体の G_i の述語は EDB 述語.
- D を各 G_i に対する EDB 関係の集合.
 D をデータベースと呼ぶ.
- $T_Q(D) = \{H \mid H : -G_1 \& \dots \& G_n$ は基礎代入例. $G_i \in D\}$
- $T_Q(D)$ はデータベース D に対する問合せ Q の答え.
- 論理積問合せは20年近く研究されている「オーソドック ス」な問題.
- 近年, 仮想ビュー管理やデータベース統合の観点から再び 脚光を浴びている。

- Q: q(X,Z) := e(X,Y) & e(Y,Z)
- D = { e(1,1), e(1,2), e(2,3), e(3,4) }
- $T_{Q}(D) = \{q(1,2), q(1,3), q(2,4) \}$



論理積問合せの包含関係

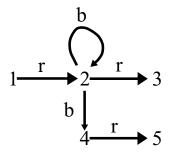
ullet 論理積問合せ $Q_1,\,Q_2$ に関して

$$Q_1 \subseteq Q_2$$

とは、任意のデータベース D に対して $T_{Q_1}(D) \subseteq T_{Q_2}(D)$.

例

- Q_1 : p(X,Y) := r(X,W) & b(W,W) & r(W,Y)
- Q_2 : p(X,Y) := r(X,W) & b(W,Z) & r(Z,Y)
- $\bullet \ D = \{r(1,2), \, r(2,3), \, r(4,5), \, b(2,2), \, b(2,4)\}$
- $T_{Q_1}(D) = \{p(1,3)\}$
- $T_{Q_2}(D) = \{p(1,3), p(1,5)\}$



$Q_1 \subseteq Q_2$ の証明

- D を任意のデータベース, p(x,y) を $T_{Q_1}(D)$ の任意の元.
- p(x,y) を推論するために使った D の元を r(x,w), b(w,w), w(w,y) とする. 変数を小文字にして定数のように扱う.
- 問合せ Q₂ において代入

を行うと p(x,y) を推論でき, p(x,y) は $T_{Q_2}(D)$ の元.

論理積問合せの間の包含写像

- $Q_1 \subseteq Q_2$ を示すためには、以下の条件を満たす Q_2 の変数から Q_1 の変数への上への写像 (包含写像と呼ぶ) を構成すれば十分.
 - Q₂ の頭部が Q₁ の頭部と一致.
 - ullet Q_2 の本体の各原子式が Q_1 の本体のある原子式と一致.

以上の条件は Q_1 での推論を Q_2 で模倣できることを保証.

例

- Q_1 : p(X,Y) := r(X,W) & b(W,W) & r(W,Y)
- Q_2 : p(X,Y) := r(X,W) & b(W,Z) & r(Z,Y)
- $Q_1 \subseteq Q_2$. Q_2 から Q_1 への包含写像を構成.

$$\begin{array}{ccccc} X & W & Z & Y \\ \downarrow & \downarrow & \downarrow & \downarrow \\ X & W & W & Y \end{array}$$

- Q_1 : p(X) := a(X,Y) & a(Y,X)
- Q_2 : p(X) := a(X,Y) & a(Y,Z)
- ullet $Q_1\subseteq Q_2$: Q_2 から Q_1 への包含写像の構成.

$$\begin{array}{cccc} X & Y & Z \\ \downarrow & \downarrow & \downarrow \\ X & Y & X \end{array}$$

- Q_1 : p(X) := a(X,Y) & a(Y,X)
- Q_2 : p(X) := a(X,Y) & a(Y,Z) & a(Z,W)
- \bullet $Q_1 \subseteq Q_2$: Q_2 から Q_1 への包含写像の構成.

$$\begin{array}{ccccc} X & Y & Z & W \\ \downarrow & \downarrow & \downarrow & \downarrow \\ X & Y & X & Y \end{array}$$

• Q_1 から Q_2 への包含写像は存在しない. Q_1 の X を, Q_2 の X と Z の 2 つの異なる変数へ写像する状況が生まれる ため.

包含写像定理

 $Q_1 \subseteq Q_2 \Leftrightarrow Q_2$ から Q_1 への包含写像が存在.

 (\Leftarrow)

•
$$Q_1$$
: H_1 :- G_1 & ... G_n
 Q_2 : H_2 :- F_1 & ... F_m

- ν を Q_2 から Q_1 への包含写像. 各 F_i に対して、ある G_j が存在し、 $\nu(F_i)=G_j$. また $\nu(H_2)=H_1$.
- t を $T_{Q_1}(D)$ の任意の元. t を推論する際に使った定数の変数への代入を σ . $t=\sigma(H_1): \sigma(G_1) \& \ldots \sigma(G_n)$ $\sigma(G_i) \in D$ $i=1,\ldots,n$
- $\sigma \circ \nu(H_2)$:- $\sigma \circ \nu(F_1)$ & ... & $\sigma \circ \nu(F_m)$ 各 F_i に対して、ある G_j が存在し、 $\sigma \circ \nu(F_i) = \sigma(G_j)$. しかも $\sigma(G_j)$ は D の元.
- $t = \sigma(H_1) = \sigma \circ \nu(H_2)$ は $T_{Q_2}(D)$ の元.

包含写像定理 証明(⇒)

Q₁ の本体の原子式の変数を凍結 (frozen) し定数として扱い,同時に原子式も EDB の元として扱う。このような EDB の集まりを正規データベース (canonical database) と呼ぶ。

例

$$Q_1$$
 $p(X)$:- $a(X,Y)$ & $a(Y,X)$ 正規データベース = { $a(x,y), a(y,x)$ }

• D を Q_1 の本体を凍結してつくった正規データベースとし, Q_1 の頭部を t とする.

例

$$t = p(x) := a(x,y) \& a(y,x)$$

• $Q_1 \subseteq Q_2$ より $t \in T_{Q_2}(D)$.

例

$$Q_2$$
 p(X):- a(X,Y) & a(Y,Z) & a(Z,W)
代入 p(x):- a(x,y) & a(y,x) & a(x,y)

- Q_2 を使って t を推論する際, Q_2 の本体の原子式の変数には D の定数 (Q_1 の変数を凍結した定数) が代入される.
- この代入は Q_2 から Q_1 への包含写像を与える.

$$\begin{array}{ccccc} X & Y & Z & W \\ \downarrow & \downarrow & \downarrow & \downarrow \\ X & Y & X & Y \end{array}$$

正規データベースを使った包含関係 $Q_1 \subseteq Q_2$ の判定

- Q_1 の本体から変数を凍結し正規データベース D を生成. 凍結した際の Q_1 の頭部を t とする.
- $T_{Q_2}(D)$ を計算.
- $Q_1 \subseteq Q_2 \iff t \in T_{Q_2}(D)$ 直観的には Q_2 を使って Q_1 のすべての推論を模倣できる ことを調べている.
- ullet 証明: $t\in T_{Q_2}(D)$ ならば Q_2 から Q_1 への包含写像をつくれる.
- Q₁ ⊆ Q₂ か否かの判定問題は NP 完全.
 Ashok K. Chandra, Philip M. Merlin: Optimal Implementation of Conjunctive Queries in Relational Data Bases. STOC 1977: 77-90.
- ・現実には、本体中の原子式の数も少なく、変数の数も少ないので必ずしも困難な問題ではない。
- 問合せ本体が否定記号をふくむ場合, 再帰的呼出しがある場合, 算術演算をふくむ場合での包含関係の判定は重要であるが, 判定方法はより複雑になる.

- Q_1 : p(X,Y) := q(X,Z) & r(Z,Y) Q_2 : p(X,Y) := q(Y,W) & r(W,X)
- Q₁ の変数を凍結. p(x,y) :- q(x,z) & r(z,y)
- 正規データベース D = {q(x,z), r(z,y)} を作成.
- $p(x, y) \notin T_{Q_2}(D) = \{p(y,x)\}$
- \bullet $Q_1 \not\subseteq Q_2$

包含関係を使った問合せ最適化

- Q_1 : p(X,Y) := e(Y,X) & e(X,Z)
- Q_2 : p(X,Y) := e(Y,X) & e(X,Z) & e(U,X)
- ullet Q_1 から Q_2 へは自明な包含写像が存在.

$$\begin{array}{cccc} X & Y & Z \\ \downarrow & \downarrow & \downarrow \\ X & Y & Z \end{array}$$

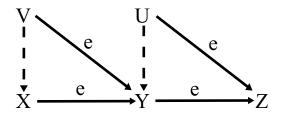
Q₂ から Q₁ への包含写像.

$$\begin{array}{ccccc} X & Y & Z & U \\ \downarrow & \downarrow & \downarrow & \downarrow \\ X & Y & Z & Y \end{array}$$

Q₂ から e(U,X) を削除しても 同値な問合せ Q₁ が得られるので, e(U,X) は無駄な条件.

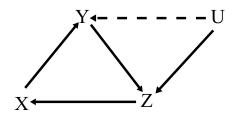
例 等価でかつ原子式の数が最小の問合せの生成.

- Q_2 p(X,W) :- e(X,Y) & e(U,Z) & e(Y,Z) & e(V,Y) & e(Z,W)
- Q_1 p(X,W) :- e(X,Y) & e(Y,Z) & e(Z,W)



例 等価でかつ原子式の数が最小の問合せの生成.

- p(X,Z) := e(X,Y) & e(U,Z) & e(Y,Z) & e(Z,X)
- p(X,Z) := e(X,Y) & e(Y,Z) & e(Z,X)



問題

• Q_1 : h(X) := red(X,Y) & blue(Y,Y) & red(Y,Z)

 $Q_2\colon \ \ \mathrm{h}(\mathbf{X}) \coloneq \mathrm{red}(\mathbf{X}, \mathbf{Y}) \ \& \ \mathrm{blue}(\mathbf{Y}, \mathbf{Z}) \ \& \ \mathrm{red}(\mathbf{Z}, \mathbf{W})$

 Q_3 : h(X) := red(X,Y) & red(Y,Z)

• Q_1, Q_2, Q_3 の包含関係を調べよ.