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Abstract

We describe a tool for compressing XML data, with

applications in data exchange and archiving, which usually

achieves about twice the compression ratio of gzip at

roughly the same speed. The compressor, called XMill,

incorporates and combines existing compressors in order

to apply them to heterogeneous XML data: it uses zlib,

the library function for gzip, a collection of datatype

speci�c compressors for simple data types, and, possibly,

user de�ned compressors for application speci�c data types.

1 Introduction

We have implemented a compressor/decompressor for
XML data, to be used in data exchange and archiv-
ing, that achieves about twice the compression rate
of general-purpose compressors (gzip), at about the
same speed. The tool can be downloaded from
www.research.att.com/sw/tools/xmill/.
XML is now being adopted by many organizations

and industry groups, like the healthcare, banking,
chemical, and telecommunications industries. The at-
traction in XML is that it is a self-describing data for-
mat, using tags to mark individual data items. How-
ever, there are some serious concerns about exporting
one's data into XML. Since XML data is irregular and
verbose, it can impact both query processing and data
exchange. Many applications (e.g. Web logs, biolog-
ical data, etc) use other, specialized data formats to
archive and exchange data, which are much more eco-
nomical than XML. As a self-describing format XML
brings exibility, but compromises e�ciency.
In this paper we show how to exploit XML's self de-

scribing nature to gain in compression. We describe

�This work was done while the author was visiting AT&T
Labs.

a compressor (XMill) and a decompressor (XDemill)
whose architecture leverages existing compressing algo-
rithms and tools to XML data: XMill uses zlib (the
library function version of gzip), a few simple, data
type speci�c compressors, and can be further extended
with user-de�ned compressors for complex, application
speci�c data types. The idea in XMill is that it uses
the XML tags to decide which compression algorithm
to apply.

While experimenting with XMill we made a striking
discovery. By migrating data from other, more space-
e�cient formats to XML, the size of the compressed
data decreases. Many such formats are in use today,
for biological data, for Web logs, etc. In each case
the data is stored in a simple (but application speci�c)
format, usually designed to be reasonably space-e�cient
for the application at hand. When translated into
XML the data expands, mainly because XML tags are
verbose and must be repeated; gzip compresses the
XML data pretty well, but it is still larger than the
original gzipped data. With XMill however, the XML
data is compressed better than the original gzipped
data, almost to half the size. Thus, by making the
data self-describing, one improves compression. Of
course, the same kind of compression could be applied
to the original format, but one has to write a speci�c
compressor for each format. In summary, by converting
to XML, one gains both exibility and e�ciency (when
compression is used).

Our compressor, XMill, applies three principles to
compress XML data:

Separate structure from data The structure, con-
sisting of XML tags and attributes, is compressed
separately from the data, which consists of a se-
quence of data items (strings) representing element
contents and attribute values.

Group related data items Data items are grouped
into containers , and each container is compressed
separately. For example, all <name> data items form
one container, while all <phone> items form a second



container. This is a generalization of column-wise
compression in relational databases (see e.g. [10]).

Apply semantic compressors Some data items are
text or numbers, while others may be DNA se-
quences. XMill applies specialized compressors (se-
mantic compressors) to di�erent containers.

An original component of XMill are the container
expressions , a concise language used for grouping
data items in containers, and for choosing the right
combination of semantic compressors.

Applicability and limitations The compressor de-
scribed here has two limitations. The �rst is that it is
not designed to work in conjunction with a query pro-
cessor. Our targeted applications are data exchange,
where compression is used to better utilize network
bandwidth, and data archiving, where compression is
used to reduce space requirement. A second limitation
of XMill is that it wins over existing techniques only if
the data set is large, typically over 20KB, because of the
additional bookkeeping overhead and the fact that small
data containers are poorly compressed by gzip. Hence
it is of limited or no use in XML messaging, where many
small-sized XML messages are exchanged between ap-
plications.

Contributions In this paper, we make the following
contributions.

� We describe an extensible architecture for an XML
compressor that leverages existing compression tech-
niques and semantic compressors to XML data.

� We describe container expressions, a brief yet pow-
erful language for grouping data items according to
their semantics, and specifying combined semantic
compressors. We present an e�cient implementa-
tion technique for the path language, which dramat-
ically improves performance for deeply nested data.

� We evaluate XMill on several real data sets and
show that it achieves best overall compression rates
among several popular compressors. Furthermore,
we show that by using XMill one decreases the size
of the compressed data by migrating from other data
formats to XML.

The paper is organized as follows. Sec. 2 describes
two motivating examples. Sec. 3 provides background
about compression techniques and gives an information-
theoretic justi�cation for our approach to XML com-
pression. The architecture of XMill, the container ex-
pression language and semantic compressors are de-
scribed in Sec. 4. In Sec. 5 we show how to make XMill
scalable and to achieve compression/decompression
times competitive with gzip. Sec. 6 describes exper-
imental results, which we discuss in Sec. 7. We describe
related work in Sec. 8 and conclude in Sec. 9.

2 Motivating Example

We start by illustrating with a very simple, but quite
useful example: Web Log �les. Virtually every Web
server logs its tra�c, for security purposes, and this
data can be (and often is) analyzed. Each line in the
log �le represents an HTTP request. A typical entry in
such a log �le is1:

202.239.238.16|GET / HTTP/1.0|text/html|200|

1997/10/01-00:00:02|-|4478|-|-|http://www.net.jp/|

Mozilla/3.1[ja](I)

Di�erent formats are currently in use: in our example
we use a variation on Apache's Custom Log Format2.
Each line is a record with eleven �elds delimited by
|: host, request line, content type, etc. Hence, the
�le's structure is very simple, with records with a �xed
number of variable-length �elds3.
Collected over long periods of time, Web logs can

take huge amounts of space. In our example we only
considered a �le with 100000 entries as the one above.
Its size is almost 16MB, and gzip shrinks it to 1.6MB:

weblog.dat: 15.9MB weblog.dat.gz: 1.6MB

Applications processing such Web logs are brittle, and
in general not portable, since di�erent vendors use
di�erent formats. To gain exibility, we may consider
converting the Web log into XML with the following
format:

<apache:entry>

<apache:host>202.239.238.16</apache:host>

<apache:requestLine>GET / HTTP/1.0</apache:requestLine>

<apache:contentType>text/html</apache:contentType>

<apache:statusCode>200</apache:statusCode>

<apache:date>1997/10/01-00:00:02</apache:date>

<apache:byteCount>4478</apache:byteCount>

<apache:referer>http://www.net.jp/</apache:referer>

<apache:userAgent>Mozilla/3.1[ja](I)</apache:userAgent>

</apache:entry>

Applications are now easier to write. However the size
increases substantially:

weblog.xml: 24.2MB weblog.xml.gz: 2.1MB

Our goal is to gain from XML's exibility without using
more space. An obvious idea is to assign integer codes
(1, 2, 3, ...) to the XML tags, and use a single
character for closing tags. A more interesting idea is to
separate the XML tags (encoded as numbers) from the
data values, and compress with gzip independently the
tags and the data values. We save space, because the
XML tags are the same for each record, and gzip can
encode this very e�ciently (see Sec. 3.2). With XMill

this e�ect is accomplished by command line:4 xmill

-p // weblog.xml. This brings the size down to:
1This is one line in the log �le.
2http://www.apache.org/docs/mod/mod log config.html
3Missing values are common and are indicated by -.
4Sec. 4.2 describes XMill's command line.



...

-p//apache:host=>seq(u8 "." u8 "." u8 "." u8)

-p//apache:byteCount=>u

-p//apache:contentType=>e

-p//apache:requestLine=>seq("GET " rep("/" e) " HTTP/1.0")

...

Figure 1: Semantic compressor settings settings.pz.

weblog1.xmi: 1.75MB

The next idea is to compress data values separately,
based on their tags: that is, all host values are
compressed together, all request lines are compressed
together, etc.
This behavior is the default and is achieved using the

ommand line xmill weblog.xml. Since gzip achieves
better compression when applied to values of similar
types, this reduces the size even further:

weblog2.xmi: 1.33MB

We now use less space than the original gzipped �le.
We can do quite a lot better than that. The idea is to

inspect carefully each �eld and use a specialized com-
pressor for it. For example the <apache:host> is usu-
ally (or always) an IP address, hence can be stored as
four unsigned bytes; most entries in <apache:requestLine>
start with GET and end in HTTP/1.0 (some in HTTP/1.1):
these substrings can be factored out. Other improve-
ments are also possible. We analyzed eight of the eleven
�elds and applied specialized compressors available in
XMill. The corresponding XMill command line is:

xmill -f settings.pz weblog.xml

where some parts of �le settings.pz are shown
in Fig. 1 (specialized compressors are described in
Sec. 4.3). This reduces the compressed size to:

weblog3.xmi: 0.82MB

Note that this is about half the original gzipped �le.
This achieves our goal: the compressed XML-ized data
can be stored in less space than the compressed original
data, while applications gain in exibility5.
The Web log is a simple example illustrating column-

wise compression applied to XML. The second example
is much more complex. SwissProt is a well-maintained
database for representing protein structure 6. It uses a
speci�c data format, called EMBL [8], for representing
information about genes and proteins (not shown here
for lack of space). We converted the original EMBL
data into XML as shown in Fig. 2.
We repeated the experiments above on a fragment of

the SwissProt data7. The original �le had 98MB and

5Of course, an application has to decompress the data �rst.
6http://www.expasy.ch/sprot/
7We omitted comments and the actual DNA sequence, which

can be compressed using specialized compressors.

<Entry id="108_LYCES" mtype="PRT" seqlen="102">

<AC>Q43495</AC>

<Mod dat="15-JUL-1999" Rel="38" typ="Created"></Mod>

<Mod dat="15-JUL-1999" Rel="38" typ="Last SeqUpd"></Mod>

<Mod dat="15-JUL-1999" Rel="38" typ="Last AnnUpd"></Mod>

<Descr>PROTEIN 108 PRECURSOR</Descr>

<Species>Lycopersicon esculentum (Tomato)</Species>

<Org>Eukaryota</Org> ... <Org>Solanum</Org>

<Ref num="1" pos="SEQUENCE FROM N.A">

<Comment>STRAIN=CV. VF36</Comment>

<MedlineID>94143497</MedlineID>

<Author>CHEN R</Author> <Author>SMITH A.G</Author>

<Cite>Plant Physiol. 101:1413-1413(1993)</Cite>

</Ref>

...

<EMBL prim_id="Z14088" sec_id="CAA78466"></EMBL>

<MENDEL prim_id="8853" sec_id="LYCes"></MENDEL>

<Keyword>Signal</Keyword>

<Features>

<SIGNAL from="1" to="30"> <Descr>POTENTIAL</Descr>

</SIGNAL>

<CHAIN from="31" to="102"> <Descr>PROTEIN 108</Descr>

</CHAIN>

...

</Features>

</Entry>

Figure 2: XML Representation of SwissProt entry

the XML-ized version had 165MB. gzip reduces the
�les to 16MB and 19MB, respectively:

sprot.dat: 98MB sprot.xml: 165MB
sprot.dat.gz: 16MB sprot.xml.gz: 19MB

Repeating the three steps above we obtained the
following improvements in size:

sprot1.xmi: 15MB
sprot2.xmi: 11MB
sprot3.xmi: 8.6MB

Note that the last �le is obtained after �ne-tuning
XMill on the SwissProt data.
In both examples the three steps correspond precisely

to the compression principles spelled out in Sec. 1. As
the examples suggests, each principle contributes with
a signi�cant improvement.

3 Background

3.1 XML

For the purpose of this paper, an XML document
consists of three kinds of tokens: tags, attributes, and
data values. As usual we model an XML document
as a tree: nodes are labeled with tags or attributes,
and leaves are labeled with data values. The path to
a data value is the sequence of tags (and, possible one
attribute) from the root to the data value node.

3.2 Compressors

General Purpose Compressors Most practical dic-
tionary compressors are derived from the LZ (Ziv and
Lempel) family of compressors. The idea in the original



LZ77 [20] is to replace repeating sequences in the input
text with a pointer to a previous occurrence. We refer
the reader to [2] for a good introduction, but only men-
tion here one important property of LZ77 that we ex-
ploited in XMill. Namely a large number of repetitions
of the same sequence, like A B C A B C ...A B C are
compressed extremely well, essentially as a run length
encoding storing only one copy of A B C, its length, and
a repetition count.
The popular general-purpose compression tool gzip

uses LZ77 in combination with other techniques. A
function library, zlib, makes its functionality available
to applications. We used zlib in XMill, and will refer
to zlib and gzip interchangeably in the paper.

Special Purpose Compressors A variety of special-
purpose compressors exists, ranging from ad-hoc to
highly complex ones [2, 16]. Special data types can
be encoded in binary, e.g. integer or date. A dictionary
encoding assigns an integer to each new word in the in-
put, and stores the mapping from codes to strings in a
dictionary. Specialized compressors exist for a variety of
data types, e.g. images, sound or DNA sequences [2, 7].

3.3 Information Theory

In his classic paper [18] introducing information theory
Claude Elwood Shannon describes an information
source, a channel, and a destination, and studies how
much information can be sent by the source to the
destination. This is given precisely by how well the
source can be compressed. A source S generates a
message x1; x2; : : : ; xm, symbol by symbol, with each
symbol drawn from a �xed, �nite alphabet A =
fa1; : : : ; ang. Shannon modeled a source as a Markov
Process, and de�ned its entropy , H . The most popular
formula for the entropy is for the special case of order
0 Markov Processes, where each symbol ai has a �xed
probability pi:

H
def
= p1 log

1

p1
+ : : :+ pn log

1

pn

Shannon proved in his paper the fundamental theorem
for a noiseless channel, which essentially says that a
message of m symbols cannot be compressed to less
than mH bits on average, and that almost optimal
compressors exists. Dictionary compressors, discussed
at the beginning of this section, have been shown to
achieve almost optimal compression [2].

Optimal compression of heterogeneous sources
Unlike Shannon's information sources, XML data is
heterogeneous. We de�ne a heterogeneous information
source S to be a collection of k+1 sources S0; S1; : : : ; Sk,
over alphabets A;B1; : : : ; Bk. The �rst alphabet has
k symbols, A = fa1; : : : ; akg, called tags , while the
others can have an arbitrary number of symbols. The

heterogeneous source emits messages of the following
shape:

x1; y1; x2; y2; : : : ; xm; ym (1)

where x1; : : : ; xm 2 A, and, whenever xj = ai, then the
next symbol yj belongs to Bi.
We prove that the three compression principles in

Sec. 1 lead to an optimal compression for heterogeneous
sources. Heterogeneous sources are a simpli�cation of
XML since they don't model nesting: nesting can be
modeled by probabilistic grammars [2].
If all k + 1 sources are of order 0, then the heteroge-

neous source S is equivalent to a (homogeneous) source
modeled by a Markov Process with k + 1 states over
the alphabet A [ B1 [ : : : [ Bk (details omitted).
Consider the following compression of a heteroge-

neous source in three steps: (1) separate the tags
x1; x2; : : : from the data items y1; y2; : : :, (2) further sep-
arate the data items according to their source Si; i =
1; k, (3) apply an optimal compressor for each source
S0; : : : ; Sk. Let H0; H1; : : : ; Hk be the entropies of the
k + 1 sources, and let p1; : : : ; pk be the probabilities of
source S0. Then the compression just described uses:

mH0 +mp1H1 +mp2H2 + : : :mpkHk (2)

bits for the message (1) of length 2m. This is because
it needs mH0 bits for x1; x2; : : : ; xm; then there are, on
average mp1 symbols from source S1, etc. Our theorem
below proves that this is optimal:

Theorem 3.1 The entropy of the heterogeneous source
S is: 1

2
(H0+ p1H1+ : : :+ pkHk). Hence the number of

bits used in (2) is optimal on average.

4 The Architecture of XMill

The architecture of XMill is based on the three
principles described in Sec. 1 and is shown in Fig. 3.
The XML �le is parsed by a SAX8 parser that sends
tokens to the path processor. Every XML token (tag,
attribute, or data value) is assigned to a container. Tags
and attributes, forming the XML structure, are sent to
the structure container. Data values are sent to various
data containers, according to the container expressions,
and containers are compressed independently.
The core of XMill is the path processor that deter-

mines how to map data values to containers. The user
can control this mapping by providing a series of con-
tainer expressions on the command line. For each XML
data value the path processor checks its path against
each container expression, and determines either that
the value has to be stored in an existing container, or
creates a new container for that value.

8Simple API for XML, http://www.megginson.com/SAX/.
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Path Processor

<apache:entry>
   <apache:host>203.237.165.15</apache:host>
   <apache:requestline>GET /images/logo.gif
   ...
   <apache:useragent>Mozilla/4.0...
</apache:entry>
<apache:entry>
   <apache:host>203.172.22.2</apache:host>

Input file: XML

   ...
   <apache:requestline>GET /dist/test.zip

-p//apache:host=>IP

-p//apache:requestline=>set("GET " t)

-p//#

Command line: Container Expressions

gzip

...

Output file: compressed XML

Figure 3: Architecture of the Compressor

Users can associate semantic compressors with con-
tainers. A few atomic semantic compressors are prede-
�ned in XMill, like binary encoding of integers, di�eren-
tial compressors, etc. Users can also combine semantic
compressors into more complex ones or can write new
semantic compressors and link them into XMill. The
default text \compressor" simply copies its input to the
container, without any semantic compression.
Containers are kept in a main memory window of

�xed size (the default is 8MB). When the window is
�lled, all containers are gzipped, stored on disk, and
the compression resumes. In e�ect this splits the input
�le into independently compressed blocks.
The decompressor XDemill is simpler, and its archi-

tecture is not shown. After loading and unzipping the
containers, the decompressor parses the structure con-
tainer, invokes the corresponding semantic decompres-
sor for the data items and generates the output.

4.1 Separating Structure from Content

The structure of an XML �le consists of its tags and
attributes, and is tokenized in XMill as follows. Start-
tags are dictionary-encoded, i.e. assigned an integer
value, while all end-tags are replaced by the token /.
Data values are replaced with their container number.
To illustrate, consider the following small XML �le:

<Book> <Title lang="English"> Views </Title>

<Author> Miller </Author>

<Author> Tai </Author>

</Book>

Tags, such as Book, Title, ... are dictionary encoded
as T1, T2, etc. Data values (e.g. English, Views,
Miller, and Tai) are assigned containers C3, C4, and
C5 depending on their parent tag:

Book = T1, Title = T2, @lang = T3, Author = T4

Structure = T1 T2 T3 C3 / C4 / T4 C5 / T4 C5 / /

In practice all tokens are encoded as integers (with 1,
2, or 4 bytes, see Sec. 4.3): tags/attributes are positive
integers, / is 0, and container numbers are negative
integers. The structure above needs 14 bytes.
So far we have ignored white spaces between tags, e.g.

between <Book> and <Title>, and the decompressor
produces a canonical indentation. Optionally, XMill
can preserve white spaces: in that case it stores them
in container9 1. In our example, the structure becomes
T1 C1 T2 C1 T3 C3 / C4 / C1 T4 ....
The size of the compressed �le typically increases only

slightly when white spaces are preserved: around 4%.
We observed a higher increase (30%) only for Treebank,
a linguistic database (see Sec. 6), because of its deeply
nested structure. In the rest of the paper we will assume
that white spaces are ignored.
We observed that, in practice, our simple encoding

scheme compresses extremely well. Since many data
sources tend to have repeated or similar structures
(e.g. many books with one Title, one @lang attribute
and two Authors), gzip's algorithm (Sec. 3.2) can
reduce the size dramatically. In our experiments the
compressed structure was typically around 1%-3% of
the compressed �le for data with regular structure and
20% for data with highly irregular structure (Treebank).

4.2 Grouping Data Values

Each data value is uniquely assigned to one data
container. The mapping from data values to containers

9Container 0 holds the structure while container 2 holds the
PI's, DTD's, and comments.



is determined by the following information: (1) the
data value's path, and (2) the user-speci�ed container
expressions. We describe them next, using the following
running example:

<Doc> <Book> <Title lang="English"> Views </Title>

</Book>

<Person> <Name> Peter </Name>

<Title> Mr. </Title>

<Child> Karen </Child>

</Person>

</Doc>

Recall that the path to a data value is the sequence of
tags from the root to that value (Sec. 3.1): e.g. the
path to Mr. is /Doc/Person/Title, while the path to
"English" is /Doc/Book/Title/@lang.

Container Expressions A natural idea is to create
one container for each tag or attribute. For example
all Title data values go to one container, all @lang
attribute values go to a di�erent container, etc.
This simple mapping typically performs well in prac-

tice, but sometimes it is too restrictive. The context
may change the tag's semantics: /Doc/Book/Title has
a di�erent meaning from /Doc/Person/Title, hence
the two Title's are best compressed separately. Con-
versely, di�erent tags may have the same meaning, like
Name and Child.
Our approach is to describe mappings from paths

to containers with container expressions. Consider the
following regular expressions derived from XPath [4]:

e ::= label j � j # j e1=e2 j e1==e2 j (e1je2) j (e)+

Except for (e)+ and #, all are XPath constructs:
label is either a tag or an @attribute, � denotes any
tag or attribute, e1=e2 is concatenation, e1==e2 is
concatenation with any path in between, and (e1je2)
is alternation. To these constructs we added (e)+, the
strict Kleene closure.
The interesting novel construct is #. It stands for

any tag or attribute (much like *), but each match of #
will determine a new container. The formal semantics
of container expressions is described in [12].
A container expression has the form c ::= =e j ==e,

where =e matches e starting from the root of the XML
tree while ==e matches e at arbitrary depth in the tree.
We abbreviate ==� with ==.

Example 4.1 //Name creates one container for all data
values whose path ends in Name. //Person/Title

creates a container for all Person's titles. // places
all data items into a single container.

Example 4.2 //# creates a family of containers: one
for each ending tag or attribute. It is a concise way
to express a whole collection of container expressions:

Compressor Description
t default text compressor
u compressor for positive integers
i compressor for integers
u8 compressor for pos. integers < 256
di delta compressor for integers
rl run-length encoder
e enumeration (dictionary) encoder
"..." constant compressor

Table 1: Atomic Semantic Compressors

//Title, //@lang, etc. (one for each tag in the XML
�le). //Person/# creates a distinct container for each
tag under Person, and (#)+ creates a distinct container
for every path.

Container expressions c1, ..., cn are given in the
command line, with the p switch:

xmill -p c1 -p c2 ... -p cn file.xml

For each data value, the path processor matches its
path against c1; c2; : : :, in that order. Assuming the
�rst match is found at ci, the processor computes the
\values" of the #'s in ci which made the match possible.
These values, together with i, uniquely determine the
data value's container.

Example 4.3 Consider the following command line:

xmill -p //Person/Title -p //(Name|Child)

-p //# file.xml

This command line compresses all Person's titles
together, all Names and Childs together. All other
data values are compressed based on their ending
tag. In particular .../Book/Title will be compressed
separately from .../Person/Title.

Default Behavior The expression -p //# is always
inserted at the end of the command line. In particular,
the command line xmill file.xml is equivalent to
xmill -p //# file.xml. This ensures that every
data value is stored in at least one container and it
provides a reasonable default behavior.

4.3 Semantic Compressors

XML data often comes with a variety of specialized
data types like integers, dates, US states, airport codes,
which are best compressed by specialized semantic
compressors. XMill supports three kinds of semantic
compressors: atomic, combined, and user-de�ned.

Atomic semantic compressors: There are eight
such compressors in XMill, shown in Table 1. We
explain here just a few and refer the reader to [16]
or standard textbooks [17] for a general discussion.



The text compressor t does not compress, but rather
copies the string to the container unchanged (it will
be compressed later by gzip). Positive integers
(compressor u) are binary encoded as follows: numbers
less than 128 use one byte, those less than 16384
use two bytes, otherwise they use four bytes. The
most signi�cant one or two bits determine the length.
The last entry is a constant compressor that does not
produce any output (the best compression of all !),
but checks that the input is the given constant. Some
semantic compressor-decompressor pairs may be lossy,
e.g. u, u8, i do not preserve leading zeros.
Semantic compressors are optionally speci�ed on the

command line using the syntax c=>s where c is a
container expression (Sec. 4.2) and s is a semantic
compressor. When missing, the default semantic
compressor is text. For a simple illustration, consider
the example:

xmill -p //price=>i -p //state=>e file.xml

The price data items are compressed as integers,
states as enumeration values, and all remaining data
items are grouped based on their tag (recall that the
default -p //# is added at the end), with no semantic
compression.
A semantic compressor may reject its input string.

In the example above, a price value which does not
parse as an integer will be rejected by the i compressor.
In that case XMill tries the next path expression:
eventually, the last -p //# will match. One can exploit
this behavior by specifying alternative compressors,
like in xmill -p //price=>i -p //price=>e ... to
capture price values like 1450, low, 55, high, ....

Combined compressors: Often data values have
structure. For example an IP address consists of
four integers separated by dots (e.g. 104.44.29.21);
a request value (Sec. 2) consists of GET followed
by a variable string. XMill has three compressor
combinators for compressing such values:

� Sequence Compressor seq(s1 s2 ...). For exam-
ple, seq(u8 "." u8 "." u8 "." u8) compresses
an IP address as four integers.

� Alternate Compressor or(s1 s2 ...). For exam-
ple, consider page references in a bibliography �le.
These can be either like 145-199, or single pages
like 145. The composite compressor is or(seq(u

"-" u) u).

� Repetition Compressor rep(d s). Here d is the
delimiter and s another semantic compressor. For
example, a sequence of comma separated keywords
can be compressed by rep("," e).

Fig. 1 illustrates the use of combined semantic compres-
sors for the Weblog data.

User-de�ned Compressors Some applications re-
quire highly specialized compressors, like for DNA
sequences [7]. Users can write their own compres-
sors/decompressors and link them into XMill and
XDemill, conforming to a speci�ed API, called SCAPI

(Semantic Compressor API [11]). Semantic compres-
sors can be used in the command line, like in xmill -p

//DNAseq=>dna file.xml, where dna is the compres-
sor's name. The extended XMill becomes application
speci�c, since a �le compressed with such an extended
XMill can only be decompressed by an XDemill with
the corresponding decompressor.

5 Implementation

XMill and XDemill are implemented in C++, and have
together about 18,000 of code. We wrote our own
SAX parser for XML, which parses the XML �le and
translates it into a stream of events: one event for each
start-tag, end-tag, data value, etc. Every XML event
(token) is sent to the path processor, which is described
next.

5.1 Path Processor

The path processor keeps track of the current path
for each data value and evaluates successively each
container expression on the path: the latter involves
evaluating a regular expression, and, if successful,
evaluating the semantic compressor on that data value.
This is the most time-critical piece in the compressor
and we tried three di�erent evaluation methods. They
are described in detail in [12].

Direct Evaluation of Regular Expressions Each
container expression is preprocessed into a minimized,
deterministic automaton (DFA)[9], and for each of them
we maintain its current state while parsing the XML
�le. This method becomes ine�cient when we have
more than one container expression, since we need to
evaluate several DFAs for each XML tag.

Evaluation using DataGuides Here we use a cache:
if p1; p2; : : : are all the XML paths seen so far, then the
cache consists of a trie for p1; p2; : : :. This trie becomes
equivalent to a DataGuide [5] at the end of the XML
document. We keep a list of corresponding DFA states
at each DataGuide node, and only need to advance
a single pointer in the DataGuide while parsing XML
tags. An exception is when we encounter a new path p:
then we expand the DataGuide with a new node and we
need to compute its associated DFA states. The size
of the DataGuides ranges from a few nodes (for regu-
lar data) to very large (for irregular data). We found
DataGuides e�cient except for the most irregular and
deeply nested data.

Evaluation using Reversed DataGuides Irregu-
lar and deeply nested data causes the DataGuide to



grow out of proportions. An example of such data is the
XML-ized TreeBank linguistic database10 [13], which
contains annotated sentences from the Wall Street Jour-
nal. The DataGuide had 340000 nodes, which trans-
lated into about 16MB of main memory (depending on
the number of DFAs), far exceeding our 8MB memory
window.
Our third strategy uses a reversed DataGuides, which

is just the DataGuide structure for the reverse paths,
and working in conjunction with reversed DFA's. The
reversed DataGuide in our example has 1.1 million
nodes (in contrast to 340000 nodes). However it
is possible to prune the reversed DataGuide much
better than the direct DataGuide, because container
expressions usually discriminate based on the last few
tags in the path: e.g. //Person/Name and //# only look
at the last one or two tags. In all our examples the
reversed DataGuide were pruned after one or two tags.
For the Treebank data, pruning was done after one tag,
reducing the reversed DataGuide to approx. 250 nodes
(the number of distinct leaf tags).

6 Experimental Evaluation

We evaluated XMill on several data sets. Our goal
was to validate XMill for XML data archiving and data
exchange and to test XMill as a compensatory tool for
migrating other data formats to XML.

Data sources We report the evaluation of XMill

on six data sources, whose characteristics are shown
in Fig. 6. The Weblog and the SwissProt data were
described in Sec. 2. Treebank [13] is a large collection of
parsed English sentences from the Wall Street Journal
stored in a Lisp like notation, which we converted
to XML. TPC-D(XML) is an XML representation of
the TPC-D benchmark database, using two levels of
nesting11. We deleted from the TPC-D data the
Comment �eld, which takes about 30% of the space, and
consists of randomly generated characters. DBLP is
the popular database bibliography database12. Finally,
Shakespeare is a corpus of marked-up Shakespeare
plays, and it is stored directly in XML.
Fig. 6 shows the size of the original data sources, the

size of their XML representation, and four characteristic
measures: our assessment of the data's regularity
(yes/no), the maximal depth of the XML tree, the
number of distinct tags, and the number of nodes in
the DataGuide (another measure of (i)regularity).

Classes of experiments We performed three classes
of experiments. First, we compared the compression
ratios of gzip and XMill under various settings. We

10More information about TreeBank is available under
http://www.cis.upenn.edu/�treebank/.

11We tried other XML representations too, and observed no
signi�cant change in the experimental results.

12http://www.informatik.uni-trier.de/�ley/db

also tested the variation of the compression ratio as
a function of the data size, and its sensitivity to the
memory window. Second, we measured the compression
and decompression times of XMill and gzip. Third,
we measured the total e�ect of XMill in an XML data
exchange application over the network.

Platform We ran the �rst two sets of experiments on
a Windows NT, 300Mhz PII machine with 128MB main
memory. The data exchange experiment was performed
by sending data from AT&T Labs, running an SGI
Challenge L (4 x 270MHz MIPS R12000, Irix 6.5.5m)
to two places: the University of Pennsylvania, running
a Sun Enterprise 3000 (4 x 250Mhz UltraSPARC) with
1024MB of memory, and a home PC (100MHz, Linux,
32MB) connected to a cable modem. We transfered
�les with rcp, for which we measured a transfer rate of
8.08MBits/s (AT&T to Penn) and 1.25MBits/s (AT&T
to home PC via cable modem).

Experimental Methodology The compression ra-
tio is expressed as \bits per bytes", e.g. 2 bits/bytes
means 25% of the uncompressed �le size. The running
time represents the elapsed time in seconds. We run
each experiment eight times and take the average of
the last �ve runs. For the data exchange experiment,
we measured the compression and decompression times
separately (at AT&T) from the data transfer; each was
executed eight times, as explained.

In comparing the running time of XMillwith gzipwe
noticed di�erences in the (time and space) e�ciency of
gzip (the stand-alone tool) and zlib (the library used
in XMill). For meaningful comparisons, we replaced
gzip with minigzip, a stand-alone program in zlib,
and compiled it with the same options as XMill. In all
experiments below, \gzip" actually means minigzip.

6.1 Compression Ratio

Fig. 5 shows the compression ratios for di�erent data
sources and compressors. For each data set, the four
connected bars represent gzip, and XMill run with
three settings (as in Sec. 2): no grouping (XMill //),
grouping based on parent tag (XMill //#; the default),
and user-de�ned grouping with semantic compression
(abbreviated XMill <u>). In XMill <u> we used
the best combination container expressions we could
�nd for each data set. For the �rst four data sets,
the bar on the left represents the relative size of the
gzipped original �le (i.e. the height of the bar is
size(gzip(orig))=(8�size(XML))).

For the �rst four data sets (which had more data
and less text), XMill's compressed under the default
setting to 45%-60% the size of gzip. Using semantic
compressors, XMill reduced the size to 35%-47% of
gzip's. For the more text-like data sets, XMill performs
only slightly better than gzip. Note that with the



Data Source Original Size Size in XML Regular? Depth Tags DataGuide Size

Weblog Data 57.7MB 172MB yes 1 10 11
SwissProt 98.5MB 158MB yes 3 92 58
Treebank 39.6MB 53.8MB no 35 251 339920
TPC-D 34.6MB 119MB yes 2 43 60
DBLP - 47.2MB yes 3 10 145

Shakespeare - 7.3MB no 5 21 58

Figure 4: Data sources for performance evaluation
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Figure 5: Compression Results

default setting, XMill already compressed the XML �le
better than gzip compressed the original �le.
Fig. 6 shows the compression ratio as a function of

the XML data size for Weblog and SwissProt. On small
�les, XMill performs worse than gzip because it splits
the data into too many small containers. The crossing
point for both data sets was at about 20KB.
Fig. 7(a) shows the sensitivity of XMill's compression

ratio on the memory window size. The compression
ratio is normalized with respect to the default of
8MB. The results show that a smaller memory window
size substantially degrades the compression rate, again
because a small window implies small containers, on
which the compression rate is poor. Beyond 8MB, both
data sets were compressed in only a few blocks, and the
compression rate did not improve too much.

6.2 Compression/Decompression Time

We measured the (de)compression time for Weblog,
SwissProt, and Treebank and considered three com-
pression strategies: gzip, XMill //#, and XMill <u>.
Fig. 8(a) shows the compression time for each data
source and compressor. For XMill, the time is split
into two parts: (1) parsing and applying semantic com-
pressors, and (2) applying gzip. XMill is generally
as fast as gzip, since XMill saves time by applying
gzip to a smaller data size and spends the time on
regrouping. For the same reason, XMill <u> is faster

than XMill //#, because the semantic compressors pre-
compress the data, hence gzip spends less time.
Fig. 8(b) shows the decompression time for each

of the data sources and compressors, broken down
according to the decompression step. There are four
such steps: (1) gunzip the containers, (2) interpret
the XML structure and merge the data values, applying
the appropriate semantic decompressors: this results in
a stream of SAX events, (3) generate the XML string
(start-tags, end-tags, data values, etc), (4) output the
�le. For gunzip we only have steps (1) and (4). Note
that the time fragmentation into parts (1)-(4) is not
completely accurate, because of caching interferences.
For a complete decompression (written to a �le)

XDemill's speed is comparable to gunzip. If we remove
the output step (4) for on-the-y decompression, then
XDemill is about twice slower than gunzip. We pay
here the price of having to merge data from di�erent
containers. However, an application could do even
better by consuming SAX events directly, rather than
having to re-parse the XML string: such applications
only need XMill to perform steps (1) and (2) (gunzip's
output always needs to be parsed).

6.3 Data Exchange

Fig. 9 shows the results of exchanging Weblog data
from AT&T to the Univ. of Pennsylvania (a) and
to a home computer via a cable modem (b). The



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 10 100 1000 10000 100000

XML Filesize (KByte)

C
om

pr
es

si
on

R
at

io
(B

its
/B

yt
e)

gzip(xml)

xmill //#

xmill <u>

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 10 100 1000 10000 100000

XML Filesize (KByte)

C
om

pr
es

si
on

R
at

io
(B

its
/B

yt
es

)

gzip(xml)

xmill //#

xmill <u>

(a) Weblog (b) SwissProt

Figure 6: Compression Ratio under Di�erent Sizes of Weblog and SwissProt

bars are split into compression time (lower bar), and
transmission+decompression (upper bar). The end-
to-end transfer time (from XML �le to XML �le) is
dominated by the compression time: here there are no
signi�cant di�erences between XMill and gzip (with
some slight advantage for XMill on the slow network).
If the �le is already compressed, then XMill shows
detectable improvements over gzip; again, better so
in the case of a slow network. Furthermore, if the
decompressed data is used directly in an application
(via a SAX interface), then only the transfer and
decompress+decode time matters, and XMill takes only
about 60% of the time of gzip. We obtained similar
results for SwissProt, which are omitted.

7 Discussion and Future Work

Bene�ts of XMill The experiments show that XMill
clearly achieves better compression rates than gzip

(around a factor of 2, for data-like XML, less for text-
like XML), without sacri�cing speed. This makes XMill
a clear winner for data archiving. For data exchange
however, the improvement depends on two factors:
the type of exchange application, and the relative
processor v.s. network speed. For a slow network,
XMill's improvements are always detectable, because
of its better compression rate. For a fast network, one
has to look at all three exchange steps: compression,
network transfer, and decompression. Compression is
consistently the most expensive, and is about the same
in gzip and XMill. Hence, the relative advantage
depends on the type of application. For an end-
to-end �le transfer, there is no clear winner. In
XML publishing, the �le is compressed only once,
and only network transfer and decompression matters:
XMill is consistently, but only modestly faster than
gzip. If, moreover, the data is imported directly into
applications, then the decompression does not need to
produce an output XML �le: here XMill can become

signi�cantly better than gzip.

Time/Space Tradeo� Di�erent general-purpose com-
pressors o�er a variety of time/space tradeo�s. We
tried a few of them on our six data sets (Fig. 6):
gzip; compress, and bzip, where compress is faster
than gzip but achieves worse compression rates, while
bzip achieves better compression rates but is exces-
sively slow. The results are shown in Fig. 7(b), where
all compression rates and compression times are nor-
malized with respect to that of gzip. The blobs high-
light the \data-like" XML data sets (Weblog, Swis-
sProt, Treebank, and TPC-D). The diagram shows that
XMill o�ers the best overall time/space tradeo� for
XML data. Given bzip's impressive performance, we
replaced gzip with bzip in XMill. Interestingly, while
the resulting compressor (called xbmill) compresses
better than XMill, the compression times did not in-
crease as badly as between gzip and bzip: this is be-
cause xbmill applies bzip to a smaller amount of data.

Schema Extraction All container expressions in
XMill have to be speci�ed manually. They were
designed keeping the XML-Schema in mind [19], and
it is relatively straightforward to generate them from
a given XML-Schema. However, it would be more
useful to extract them automatically from a given
XML data set. Unlike previous work on schema
extraction for semistructured data [14], the critical
part is choosing the right semantic compressor for
each container. An automatic datamining tool must
recognize integers, dates or structured �elds and cluster
data correspondingly.

8 Related Work

General Compression General compression meth-
ods are described in textbooks [2, 17]. A more recent
method is block-sorting compression described in [3],
which is used in bzip. It sorts the characters in a block
�rst before applying other compression.



0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

0 5000 10000 15000 20000 25000

Memory Window Size (KByte)

R
el

at
iv

e
C

om
pr

es
si

on
R

at
io

WebLog //#
WebLog <u>
SwissProt //#
SwissProt <u>

0.1

1

10

100

0 0.5 1 1.5 2 2.5

Relative Compression Size

R
el

at
iv

e
C

om
pr

es
si

on
T

im
e

gzip(orig)

xmill //#

xmill <u>

bzip(orig)

xbmill //#

xbmill <u>

compress

gzip

compress

bzip

xmill

xbmill

(a) (b)

Figure 7: (a) Compression under Varying Memory Windows, (b) Compression Rate vs. Time

0

10

20

30

40

50

60

70

80

90

gzip xmill //#
Weblog

xmill
<u>

gzip xmill //#
SProt

xmill
<u>

gzip xmill //#
TBank

xmill
<u>

Compresssion Type

C
om

pr
es

si
on

T
im

e
(s

ec
)

Compress

Parse

0

5

10

15

20

25

30

35

40

45

50

gzip xmill //#
Weblog

xmill <u> gzip xmill //#
SProt

xmill <u> gzip xmill //#
Tbank

xmill <u>

Compression Type

D
ec

om
pr

es
si

on
T

im
e

(s
ec

)

Output XML
Generate XML
Decode
Decompress

(a) (b)

Figure 8: Compression (a) and Decompression (b) Time

-40

-30

-20

-10

0

10

20

30

40

50

60

gzip xmill //#
50MB

xmill
<u>

gzip xmill //#
75MB

xmill
<u>

gzip xmill //#
112MB

xmill
<u>

T
ra

ns
fe

r
T

im
e

(s
ec

)

Output XML
Generate XML
Decompress/Decode
Transfer
Parse/Compress

-40

-30

-20

-10

0

10

20

30

40

50

60

gzip xmill //#
50MB

xmill
<u>

gzip xmill //#
75MB

xmill
<u>

gzip xmill //#
112MB

xmill
<u>

T
ra

ns
fe

r
T

im
e

(s
ec

)

Output XML
Generate XML
Decompress/Decode
Transfer
Parse/Compress

(a) (b)

Figure 9: Network Transfer Time from AT&T Labs to Penn (a) and to a home PC (b)



Database Compression In databases, compression
has been advocated as a method for cost reduction: to
save storage space and improve processing time, based
on the observation that much of the query processing
time is due to I/O. A survey of database compression
techniques can be found in [16]. The more recent work
in [10, 6, 15] proposes techniques that allow the query
processor to decompress a small unit of data at a time:
one column value in the table, or one row.
Two features distinguish XMill from this work:

XMill is not designed to be used in a query processor,
and we do not propose a new compression algorithm,
but rather o�er a framework in which existing algorithm
can be leveraged to compress XML data.
An interesting tool which inuenced us during this

project is pzip [1]. It compresses data �les with �xed-
length records very e�ciently by �rst applying run-
length encoding on mostly blank character columns and
by gouping the remaining columns using its schema
extraction tool before submitting it to zlib.

Other XML Compressors At the time of writing, a
single product has been announced, by XML Solutions,
called xmlzip (www.xmlzip.com). Implemented in
Java, xmlzip cuts the XML tree at a certain depth and
compresses the upper part separately from the lower
part, both using gzip. Tested on our data sets (Fig 6),
it ran out of memory on all sets except Shakespeare.
There, it achieves a compression ratio between that of
gzip's and XMill, but at much lower speed.

9 Conclusions

We have described a compressor for XML data called
XMill, which is an extensible tool for applying existing
compressors to XML data. Its main engine is zlib, the
library function variant for gzip. One of our targeted
applications is XML data archiving, where compression
rate counts alone. Here XMill achieves about twice the
compression rate of gzip, at roughly the same speed,
and is generally ranked best among other compressors
we compared it against: compress, bzip, xmlzip. A
second application we target is data exchange, where
both compression ratio and compression/decompression
time count. While XMill never looses to gzip, the size
of its improvements depends on a variety of factors
(type of application and relative processor/network
speed), and range from none to almost a factor of 2.
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