
Computing Optimal Hypotheses E�ciently for Boosting

(Draft as of Feb. 20, 2000)

Jun Sese

University of Tokyo

sesejun@gi.k.u-tokyo.ac.jp

Shinichi Morishita

University of Tokyo

moris@k.u-tokyo.ac.jp

Abstract

This paper sheds light on a strong connection between AdaBoost

and several optimization algorithms for data mining. AdaBoost has

been the subject of much interests as an e�ective methodology for clas-

si�cation task. AdaBoost repeatedly generates one hypothesis in each

round, and �nally it is able to make a highly accurate prediction by

taking a weighted majority vote on the resulting hypotheses. Freund

and Schapire have remarked that the use of simple hypotheses such

as single-test decision trees instead of huge trees would be promising

for achieving high accuracy and avoiding over�tting to the training

data. One major drawback of this approach however is that accura-

cies of simple hypotheses may not always be high, hence demanding

an e�cient way of computing the most accurate simple hypothesis.

In this paper, we consider several classes of simple but expressive hy-

potheses such as ranges and regions for numeric attributes, subsets of

categorical values, and conjunctions of Boolean tests. For each class,

we develop an e�cient algorithm for choosing the optimal hypothesis.

0

1 Introduction

Classi�cation has been a prominent subject of study in the machine learning

and data mining literature. Let xi denote a vector of values for attributes,

which is usually called a record or a tuple in the database community. Let

yi denote the objective Boolean value that is either 1 or 0. We call a record

(xi; yi) positive (resp. negative) if yi = 1 (yi = 0). Given (x1; y1); : : : ; (xN ; yN)

as a training dataset, classi�cation aims at deriving rules that are able to

predict the objective value of y from x with a high probability.

For classi�cation problems, decision trees are used mostly in practical ap-

plications. Recently, to further improve the power of existing classi�ers,

boosting techniques have received much interest among the machine learn-

ing and data mining communities [13]. A classi�er is called a weak hypothesis

if its predication accuracy regarding the training dataset is at least better

than 1/2. A boosting algorithm tries to generate some weak hypotheses so

that it is able to make a highly accurate prediction by combining those weak

hypotheses. There have been many proposals for such boosting algorithms

[13, 8]. Freund and Schapire presented the most successful algorithm, named

\AdaBoost", that solved many of the practical di�culties of the earlier boost-

ing algorithms [10].

2 AdaBoost

The key idea behind AdaBoost is to maintain the record weights in the

training dataset. AdaBoost assumes the existence of a weak learner that

is able to output a weak hypothesis in a �nite number of steps. The aim

of this paper is to propose e�cient weak learners, but for the purpose of

1

explanation, we continue the discussion by assuming weak learners. In each

iteration AdaBoost calls on a weak learner to generate one weak hypothesis

by considering the weighted records as the training dataset and updates the

weights of the records to force the next call of the weak learner focus on the

mis-predicted records. In this way, we prepare a set of voters with di�erent

characteristics. In the �nal step, we de�ne the weight of each voter according

to its prediction accuracy in the training dataset, and we generate the �nal

hypothesis using a weighted majority vote.

Pseudo-code

We now present a pseudo-code for AdaBoost. First, the inputs to Ad-

aBoost are a training dataset f(x1; y1); : : : ; (xN ; yN)g, the initial weights

w1
i = 1=N (i = 1; : : : ; N), a weak learner named WeakLearn, and the in-

teger T specifying number of iterations. AdaBoost repeats the following

three steps for each t = 1; 2; : : : ; T :

1. Calculate the distribution pti of each record (xi; yi) by normalizing

weights wt
i; namely,

pti =
wt
iPN

i=1w
t
i

:

2. Invoke WeakLearn to produce such a weak hypothesis ht : X! f1; 0g

that the error �t of ht is less than 1/2, where �t is de�ned:

�t =
NX
i=1

pti jht(xi)� yij:

Observe that jht(xi)� yij is 1 if ht mis-predicts the objective value of

(xi; yi); namely, ht(xi) 6= yi. Otherwise, jht(xi)� yij = 0.

3. Set �t = �t=(1� �t). Note that �t < 1 since �t < 1=2. We then set the

2

new weight wt+1
i for each i = 1; : : : ; N to be

wt+1
i = wt

i �
1�jht(xi)� yij
t :

Observe that 1 � jht(xi)� yij is 0 if ht(xi) 6= yi, and is 0 otherwise.

Thus if ht(xi) 6= yi, �
1�jht(xi)� yij
t = 1, and hence the weight of

(xi; yi) is unchanged (wt+1
i = wt

i). On the other hand, if ht(xi) = yi,

the weight of (xi; yi) is decreased because wt+1
i = �tw

t
i. Observe that

the weights of incorrectly predicted records are relatively increased so

that the weak learner can focus on these \hard" records in the next

step.

Lastly, AdaBoost outputs the �nal hypothesis hf that is a weighted majority

vote of T weak hypotheses where we assign the weight � ln�t to ht:

hf (x) =

8><
>:

1 if
PT

t=1(� ln�t)ht(x) �
PT

t=1(� ln�t)
1

2

0 otherwise.

Boosting Property

Since �t is less than 1/2, there exists 0 <
t � 1=2 such that �t = 1=2 �

t. Observe that
t measures how much ht's predictions are better than a

hypothesis that guesses at random. Freund and Schapire proved the following

theorem, which is called the boosting property:

Theorem 2.1 [10] Let � denote the error of the �nal hypothesis; that is,

(
PN

i=1 jhf (xi)� yij)=N . Then we have:

� � �T
t=12(�t(1� �t))

1

2 = �T
t=1(1� 4
2t)

1

2 :

The above theorem indicates that the error of the �nal hypothesis adapts

to the error of individual weak hypothesis. If most weak hypotheses are

3

moderately accurate, the error of the �nal hypothesis drops exponentially

fast, and hence the number of iterations T could be e�ciently minimized.

3 Simple Classes of Weak Hypotheses

Decision Stumps

To design the weak learner of AdaBoost, we can
exibly choose any method

for �nding weak hypotheses. In the literature, C4.5 has been frequently

used as a weak learner [3, 9]. In [9] Freund and Schapire employ C4.5 to

generate two classes of weak hypotheses: large decision trees and single-test

decision trees which are named \decision stumps." They remark that large

decision trees are a kind of overly complex weak hypothesis and thereby fail

to perform well against unseen test datasets. Decision stumps, on the other

hand, are simple and hence may not be subject to over�tting to the training

datasets. However, Domingo and Watanabe [7] reported that in later rounds

of iterations in AdaBoost, the resulting decision stump is often too weak,

and hence we have to generate a large number of very weak hypotheses for

improving the prediction accuracy of the �nal hypothesis. To make matters

worse, sometimes the weak learner cannot even output a su�cient number of

weak hypotheses, because it cannot �nd any hypothesis whose error is smaller

than 0.5. Once we encounter this situation, it is impossible to improve the

�nal prediction accuracy. We will now present such an example.

4

Motivating Example

Figure 1 illustrates a sample training dataset of the following four hundred

records:

f(xi1; xi2; yi) j xi1; xi2 2 f1; 2; : : : ; 20g; yi is either 0 or 1:g:

xi1 and xi2 are values of attributes A1 and A2 respectively. In Figure 1, black

points indicate positive records (yi = 1), while white points are negative ones

(yi = 0).

A1

A2

Figure 1: Motivating Example

Since the values in all records are numeric, it is natural to use decision

stumps ht de�ned by either

ht((xi1; xi2)) = 1 i� v1 � xi1; or ht((xi1; xi2)) = 1 i� v2 � xi2;

where v1; v2 2 f0; 1; 2; : : : ; 20g. We call those hypotheses binary splitting.

For the purpose of improving the prediction accuracy of the �nal hypothe-

sis, as Theorem 2.1 indicates, we should select the optimal binary splitting

hypothesis that minimizes the error among all binary splitting hypotheses in

5

each round of AdaBoost. Actually it is not computationally costly to design

such a weak learner, because we need to scan the domains of A1 and A2

just once. However, if we apply AdaBoost to the running dataset and iter-

ate the generation of binary splitting hypotheses, the error of the eighteenth

optimal hypothesis becomes 0.5, and hence we cannot further generate weak

hypotheses. Figure 2 presents how the error of the �nal hypothesis changes if

we increase the number of binary splitting hypotheses. The line graph termi-

nates at the seventeenth hypothesis, because we could obtain only seventeen

weak hypotheses.

Figure 2: Error Curve of Using Binary Splitting Hypotheses

Simple but Expressive Hypotheses

It is natural to ask if there is an alternative class of weak hypotheses between

the two extreme classes: large decision trees and simple decision stumps. Fre-

und and Schapire [10] suggest that one plausible way is to restrict the weak

learner to choose its weak hypotheses from some simple class of functions.

6

Following the line suggested, we consider several classes of simple but more

expressive hypotheses that are broader than the class of decision stumps.

These broader classes include ranges and regions for numeric attributes, sub-

sets of categorical values, and conjunctions of Boolean tests. Searching such

broader classes, we need to avoid selecting a very weak hypothesis from each

class, and we expect to choose the optimal one that minimizes the error.

However, it is a non-trivial question whether one can design an e�cient algo-

rithm for solving this optimization problem. Before presenting the solution to

the optimization problem, we show what happens if we apply region splitting

in replace of binary splitting to the running example.

Rectangular Region Splitting for Motivating Example

We here consider to use hypotheses ht of the form:

ht((xi1; xi2)) = 1 i� (xi1; xi2) 2 [v1; v2]� [w1; w2];

which we call region splitting hypotheses. In each step of AdaBoost, let us

compute the optimal region splitting hypothesis that minimizes the error.

E�cient algorithms for this purpose will be given in Section 4. Figure 3

presents how the error of the �nal hypothesis decreases as the number of

region splitting hypotheses increases. The use of region splitting hypotheses

outperforms the use of binary splitting hypotheses in many respects. First,

we could generate more than 100 region splitting hypotheses. Second, the

error of just one region splitting hypothesis is substantially smaller than that

of using seventeen binary splitting hypotheses. Third, as Theorem 2.1 indi-

cates, the error continues to decrease and reaches 0.0275 when one hundred

region splitting hypotheses are used.

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50 60 70 80 90 100

E
rr

or
 R

at
io

 o
f t

he
 F

in
al

 H
yp

ot
he

si
s

Number of Weak Hypotheses

binary

region

Figure 3: Error Curves: Region Splitting vs. Binary Splitting

Optimization Problem

Minimization of the error �t of the t-th weak hypothesis ht is equivalent to

maximization of the prediction accuracy, which is 1� �t. Observe:

1� �t =
X

fijht(xi)=yig

pti

=
X

fijht(xi)=yi=1g

pti +
X

fijht(xi)=yi=0g

pti

=
X

fijht(xi)=yi=1g

pti + (
X

fijyi=0g

pti �
X

fijht(xi)=1;yi=0g

pti)

= (
X

fijht(xi)=1;yi=1g

pti �
X

fijht(xi)=1;yi=0g

pti) +
X

fijyi=0g

pti:

De�ne

gti =

8><
>:

pti if yi = 1

�pti otherwise.

Let us call gti the accuracy gain (gain, for short) of (xi; yi) for ht. Then,

1� �t =
X

fijht(xi)=1g

gti +
X

fijyi=0g

pti:

Since
P

fijyi=0g p
t
i is independent of the choice of ht, maximization of the

acuuracy 1 � �t is equivalent to maximization of
P

fijht(xi)=1g g
t
i . We call

8

P
fijht(xi)=1g g

t
i the accuracy gain (gain, for short) of ht. In what follows, for

each class of simple hypotheses, we present an e�cient algorithm for choosing

the optimal hypothesis whose gain are maximum in its class.

4 Optimal Ranges and Regions

We �rst introduce e�cient algorithms for computing optimal ranges and then

move on to optimal regions.

Optimal Ranges

Although xi is a value vector, for simplicity, let us assume that xi itself

denotes a single numeric value. We use hypotheses ht such that

ht(xi) = 1 i� xi 2 [l; h]:

Our goal is to compute an optimal range [l; h] that maximizes the accuracy

gain of ht; namely

max
X

fijxi2[l;h]g

gti:

Without loss of generality, we assume that xi are sorted in an ascending order

x1 � x2 � x3 � : : :. If some xi; : : : ;xi+k are equal, we merge them in the

sense that we take the sum of gains gti + : : :+ gti+k, assign the sum to xi, and

rename the indexes so that all indexes are consecutive; namely, x1 < x2 < : : :.

Then, input the sequence of gains gt1; g
t
2; : : : to Kadena's algorithm [4]. Given

a sequence of real numbers g1; g2; : : : ; gM , Kadena's algorithm computes an

optimal range [s; t] that maximizes
P

i2[s;t] gi in O(M)-time.

It is natural to consider the use of more than one range for maximizing

accuracy gain. In the last KDD conference, Brin, Rastogi, and Shim pre-

9

sented an e�cient way of computing the optimal set of at most k ranges in

O(kM)-time [5], which is a non-trivial extension of Kadena's algorithm.

Optimal Regions

In Section 3, we have discussed the advantage of using region splitting hy-

potheses of the form:

ht((xi1; xi2)) = 1 i� (xi1; xi2) 2 [v1; v2]� [w1; w2]:

We here present how to e�ciently compute the optimal rectangle R that

maximizes the accuracy gain; namely,

max
X
fgti j (xi1; xi2) 2 Rg:

In order to limit the number of rectangles to a moderate number, we �rst

divide the domain of xi1 (also, xi2) intoM non-overlapping buckets such that

their union is equal to the original domain. Using those buckets, we divide

the two dimensional plane into M2 pixels, and we represent a rectangle as

a union of those pixels. Although the number of rectangles is O(M4), it

is straightforward to design an O(M3)-time algorithm by using Kadena's

algorithm. The idea is that for each of MC2 pairs of rows, we apply Kadena's

algorithm to calculate the optimal range of columns. Also, a subcubic time

algorithm that uses funny matrix multiplication [14] is also available.

We are then interested in the design of e�cient algorithm for comput-

ing more than one rectangles for maximizing the accuracy gain. However,

Khanna, Muthukrishnan and Paterson remark that the problem is NP-hard

[12]. Brin, Rastogi, and Shim present an approximation algorithm for this

problem [5], however the approximation is within a factor of 1

4
of the optimal

solution. Thus computing the optimal set of more than one rectangles is

10

computationally intractable. In practice, however, calculating one rectangle

in each round of AdaBoost would be su�cient to make a highly accurate

prediction, as we have seen in the previous section. This is partly because

the �nal hypothesis performs a weighted majority vote of weak hypotheses

of rectangles, and this vote is almost equivalent to the task of checking the

existence of a record in the union of these rectangles.

So far we have been focusing on rectangles. In general there have been de-

veloped e�cient algorithms for computing the optimized gain region among

various classes of two dimensional connected regions whose boundaries are

more
exible than those of rectangles. For instance, an x-monotone region

is such a connected region that the intersection with any column is undi-

vided, and a rectilinear convex region is such an x-monotone region that the

intersection with any row is also undivided. The optimized gain x-monotone

(rectilinear convex, respectively) region can be computed in O(M2)-time [11]

(in O(M3)-time [15]). The use of these regions is expected to further improve

the prediction accuracy of the �nal hypothesis.

5 Optimal Conjunction

Given a dataset f(xi1; xi2; : : : ; xin; yi) j i = 1; : : : ; Ng such that xij is Boolean

valued; that is, xij 2 f0; 1g. In this section, we consider hypotheses ht that

are conjunctions of simple tests on each attribute; that is;

ht((xi1; xi2; : : : ; xin)) = 1 i� xij1 = 1 ^ : : : ^ xijM = 1: (1)

We are then interested in computing the optimal conjunction that maximizes

the accuracy gain. The number of conjunctions of the form (1) is nCM . If

we treat M as a variable, we can prove that the problem is NP-hard by

11

using the NP-completeness of the minimum set cover problem. The proof is

length so we will omit it due to the space limitation. In practice, it would

be reasonable to limit the number of conjunctions M to a small constant,

say �ve. Then, the problem becomes to be tractable, but the problem still

demands an e�cient way of computing the optimal conjunction especially

when the number of attributes n is fairly large.

Connection with Itemset Enumeration Problem

We �rst remark that the problem has a strong connection with itemset enu-

meration problem [1]. We then we will generalize the idea of Apriori algo-

rithm [2] for computing the optimal conjunction e�ciently.

Let a1; a2; : : : ; an be n items. We will identify a record with an itemset

according to the mapping �:

� : (xi1; : : : ; xin) ! faj j xij = 1g:

For instance, �((1; 0; 1; 1; 0)) = fa1; a3; a4g. We also regard the conjunction

xij1 = 1 ^ : : : ^ xijM = 1 as faj1 ; : : : ; ajMg. For example, we associate xi3 =

1^xi4 = 1 with fa3; a4g. We are able to rephrase the property that the record

(1; 0; 1; 1; 0) satis�es xi3 = 1 ^ xi4 = 1 by using words of itemsets; namely,

fa1; a3; a4g � fa3; a4g. In general, we have the following equivalence:

ht((xi1; xi2; : : : ; xin)) = 1

i� xij1 = 1 ^ : : : ^ xijM = 1

i� �((xi1; xi2; : : : ; xin)) � faj1; : : : ; ajMg:

In what follows, for simplicity, let xi denote (xi1; xi2; : : : ; xin). Then, �(xi)

means �((xi1; xi2; : : : ; xin)).

12

Now �nding the optimal conjunction of the form (1) that maximizes the

accuracy gain is equivalent to the computation of the itemset I that maxi-

mizes
X

fij�(xi)�Ig

gti :

Let us call the above sum of gains the gain of I. Let gain(I) denote the

sum. The gain of I is similar to the support of I, jfi j �(xi) � Igj=N , where

N is the number of all records. Thus one may consider the possibility of

applying the Apriori algorithm to the calculation of the optimal itemset

I that maximizes gain(I). To this end, however, Apriori needs a major

conversion.

Extending the Idea of Apriori Algorithm

Let support(I) denote the support of I. The support is anti-monotone with

respect to set-inclusion of itemsets; that is, for any J � I, support(J) �

support(I). The Apriori algorithm uses this property to e�ectively prune

away a substantial number of unproductive itemsets from its search space.

However, the gain is not anti-monotone; namely, J � I does not always

imply gain(J) � gain(I), because some gti could be negative.

We solve this problem as follows: We scan the lattice of itemsets beginning

with smaller itemsets and continuing to larger ones, according to Apriori's

strategy. Suppose that we investigate an itemset I during the search. The

following theorem presents a tight upper bound on fgain(J) j J � Ig.

Theorem 5.1 For any J � I,

gain(J) �
X

fij�(xi)�I;yi=1g

gti :

13

Proof: Recall

gti =

8><
>:

pti if yi = 1

�pti if yi = 0:

Then,

gain(I) =
X

fij�(xi)�Ig

gti =
X

fij�(xi)�I;yi=1g

pti �
X

fij�(xi)�I;yi=0g

pti

Since pti � 0, for each v 2 f0; 1g,

X
fij�(xi)�J;yi=vg

pti �
X

fij�(xi)�I;yi=vg

pti:

Consequently, gain(J) �
P

fij�(xi)�I;yi=1g g
t
i .

De�nition 5.1 Let u(I) denote the upper bound
P

fij�(xi)�I;yi=1g g
t
i .

During the scan of the itemset lattice, we always maintain the temporarily

maximum gain among all the gains calculated so far and set it to � . If

u(I) < � , no superset of I gives a gain greater than or equal to � , and hence

we can safely prune all supersets of I at once. On the other hand, if u(I) � � ,

I is promising in the sense that there might exist a superset J of I such that

gain(J) � � .

De�nition 5.2 Suppose that � is given and �xed. An itemset is a k-itemset

if it contains exactly k items. An itemset I is promising if u(I) � � . Let Pk

denote the set of promising k-itemsets.

Thus we will search P1[P2[: : : for the optimal itemset. Next, to accelerate

the generation of Pk, we introduce a candidate set for Pk.

De�nition 5.3 An itemset I is potentially promising if every proper subset

of I is promising. Let Qk denote the set of all potentially promising k-

itemsets.

14

The following theorem guarantees that Qk is be a candidate set for Pk.

Theorem 5.2 Qk � Pk.

� := 0;

Q1 := fI j I is a 1-itemset.g; k := 1;

repeat begin

If k > 1, generate Qk from Pk�1;

For each I 2 Qk, scan all the records to compute u(I) and gain(I);

� := max(�; maxfgain(I) j I 2 Qkg);

Pk := fI 2 Qk j u(I) � �g; X := Pk; k ++;

end until X = �;

Return � with its corresponding itemset;

Figure 4: AprioriGain for Computing the Optimal Itemset

The bene�t of Qk is that Qk can be obtained from Pk�1 without scanning

all records that may reside in the secondary disk. To this end, we use the

idea of the apriori-gen function of the Apriori algorithm [2]; that is, we

select two members in Pk�1, say I1 and I2, such that I1 and I2 share (k �

2) items in common, and then check to see whether each (k � 1)-itemset

included in I1 [I2 belongs to Pk�1, which can be determined e�ciently by

organizing Pk�1 as a hash tree structure. We repeat this process to create Qk.

Figure 4 presents the overall algorithm, which we call AprioriGain (Apriori

for optimizing Gain).

Performance Result

We have applied AprioriGain to datasets that were generated using the

method introduced by Agrawal and Srikant [2]. The execution time of Apri-

15

oriGain scaled almost linearly with the number of records. Due to the space

limitation, we omit the performance results, which will be presented in the

full version of this paper.

6 Optimal Subset of Categorical Values

In this section, for simplicity, let us assume that xi itself denotes a single cate-

gorical value. Let fc1; c2; : : : ; cMg be the domain of the categorical attribute.

Typical hypotheses ht would be of the form:

ht(xi) = 1 i� xi = cj:

Computing the optimal choice of cj that maximizes the accuracy gain is

inexpensive. In practice, the number of categorical values M could be fairly

large; for instance, consider the number of countries in the world. In such

cases, the number of records satisfying xi = cj could be relatively small,

thereby raising the error of the hypothesis ht. One way to overcome this

problem is to use a subset S of fc1; c2; : : : ; cMg instead of a single value and

to employ hypotheses of the form:

ht(xi) = 1 i� xi 2 S:

Our goal is then to �nd S that maximizes the sum of gains
P

xi2S g
t
i. Al-

though the number of possible subsets of fc1; c2; : : : ; cMg is 2M , we are able

to compute the optimal subset S in O(M)-time. First, without loss of gen-

erality, we assume that

X

fijxi=c1g

gti �
X

fijxi=c2g

gti � : : : �
X

fijxi=cMg

gti :

Otherwise, we rename the indexes so that the above property is guaranteed.

We then obtain the following property.

16

Theorem 6.1 Let

S = fcj j
X

fijxi=cjg

gti � 0g:

S maximizes
P

xi2S g
t
i .

Thus we only need to �nd the maximum index k such that

X

fijxi=ckg

gti � 0;

returning S = fcj j j = 1; : : : ; kg as the answer. Consequently, the optimal

subset can be computed in O(M)-time.

7 Discussion

To improve the prediction accuracy of AdaBoost, we have presented e�cient

algorithms for several classes of simple but expressive hypotheses. In the

literature, boosting algorithms have been developed in the machine learning

community, while optimization algorithms for association rules and optimized

ranges/regions have been proposed and studied in the database and data

mining communities. This paper sheds light on a strong connection between

AdaBoost and optimization algorithms for data mining.

There are some interesting open problems regarding the design of opti-

mization algorithms. For instance, let D1 and D2 be the domains of two

categorical attributes. The question is if we can develop an e�cient algo-

rithm for computing a pair of S1 � D1 and S2 � D2 that maximizes

X
fgti j xi1 2 S1; xi2 2 S2g:

Incidentally many researchers have been evaluating the empirical perfor-

mance of AdaBoost by using decision trees or decision stumps as weak hy-

potheses [6, 9]. For instance, an elaborate analysis can be found in [6]. We

17

plan to perform empirical tests by using optimal hypotheses presented in this

paper.

Acknowledgement We thank Carlos Domingo, Naoki Katoh, and Osamu

Watanabe for their valuable input.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between

sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, Washington, D.C., May

26-28, 1993, pages 207{216. ACM Press, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in

large databases. In VLDB'94, Proceedings of 20th International Conference

on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile,

pages 487{499. Morgan Kaufmann, 1994.

[3] E. Bauer and R. Kohavi. An empirical comparison of voting classi�cation

algorithms: Bagging, boosting, and variants. Machine Learning, 36(2):105{

139, 1999.

[4] J. Bentley. Programming pearls. Communications of the ACM, 27(27):865{

871, Sept. 1984.

[5] S. Brin, R. Rastogi, and K. Shim. Mining optimized gain rules for numeric at-

tributes. In Proceedings of the Fifth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 15-18 August 1999, San Diego,

CA USA, pages 135{144. ACM Press, 1999.

[6] T. G. Dietterich. An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization. Ma-

chine Learning (to appear), http://www.cs.orst.edu/ tgd/cv/pubs.html.

18

[7] C. Domingo and O. Watanabe. A modi�cation of adaboost: A preliminary

report. Research Reports, Dept. of Math. and Comp. Sciences, Tokyo Institute

of Technology, (C-133), July 1999.

[8] Y. Freund. Boosting a weak learning algorithm by majority. Information and

Computation, 121(2):256{285, 1995.

[9] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm.

InMachine Learning: Proceedings of the Thirteenth International Conference,

pages 148{156, 1996.

[10] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System

Sciences, 55(1):119{139, Aug. 1997.

[11] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using

two-dimensional optimized accociation rules: Scheme, algorithms, and visual-

ization. In Proceedings of the 1996 ACM SIGMOD International Conference

on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages

13{23. ACM Press, 1996.

[12] S. Khanna, S. Muthukrishnan, and M. Paterson. On approximating rect-

angle tiling and packing. In Proceedings of the Ninth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 384{393, Jan. 1998.

[13] R. E. Schapire. The strength of weak learnability (extended abstract). In

FOCS, pages 28{33, 1989.

[14] H. Tamaki and T. Tokuyama. Algorithms for the maxium subarray problem

based on matrix multiplication. In Proceedings of the Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 446{452, Jan. 1998.

[15] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Comput-

ing optimized rectilinear regions for association rules. In Proceedings of the

19

Third International Conference on Knowledge Discovery and Data Mining,

pages 96{103, Aug. 1997.

20

