On Wrapping Query Languages and Efficient XML Integration

Vassilis Christophides

Institute of Computer Science
FORTH, P.O. Box 1385
Heraklion, Greece

christop@csi.forth.gr

Abstract

Modern applications (Web portals, digital libraries, etc.) re-
quire integrated access to various information sources (from
traditional DBMS to semistructured Web repositories), fast
deployment and low maintenance cost in a rapidly evolving
environment. Because of its flexibility, there is an increas-
ing interest in using XML as a middleware model for such
applications. XML enables fast wrapping and declarative
integration. However, query processing in XML-based inte-
gration systems is still penalized by the lack of an algebra
with adequate optimization properties and the difficulty to
understand source query capabilities. In this paper, we pro-
pose an algebraic approach to support efficient XML query
evaluation. We define a general purpose algebra suitable for
semistructured or XML query languages. We show how this
algebra can be used, with appropriate type information, to
also wrap more structured query languages such as OQL or
SQL. Finally, we develop new optimization techniques for
XML-based integration systems.

1 Introduction

XML [6] is becoming widely used for the development
of Web applications that require data integration (Web
portals, e-commerce, etc). Although fashion surely ac-
counts for some of XML’s popularity, it is also justified
on technical grounds. XML enables easy wrapping of
external sources and declarative integration, thus allow-
ing fast deployment and cheap maintenance of applica-
tions. Still, XML-based systems are not yet as efficient
as traditional integration software [39, 8, 40, 26, 22, 7].
In this paper, we address this issue.

Let us consider an example to motivate the use of
XML technology and the improvements we propose. In
this example, we plan to build a Web site providing

Project supported by OPAL (Esprit IV project 20377) and
AQUARELLE (Telematics Application Program IE-2005).

Permission to make digital or hard copies of part or al of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific
permission and/or afee.

MOD 2000, Dallas, TX USA

© ACM 2000 1-58113-218-2/00/05 . . .$5.00

Sophie Cluet
INRIA Rocquencourt
BP 105, 78153
Le Chesnay Cedex, France
Sophie.Cluet@inria.fr

<object id="al" class="artifact">
<tuple>
<title> Nympheas </title>
<year> 1897 </year>
<creator> Claude Monet
</creator>

*

Jérome Siméon
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ, USA

simeon@research.bell-labs.com

<work>

<artist> Claude Monet </artist>
<title> Nympheas </title>
<style> Impressionist </style>
<size> 21 x 61 </size>
<cplace>Giverny</cplace>

<price> 10.000.000 </price> | </work>
<owners refs = "pl p2 p3"/>
</tuple> <work>
</object> <artist> Claude Monet </artist>

..... <title> Waterloo Bridge </title>
<object id="p3" class="person"> <style> Impressionist </style>
<tuple> <size> 29.2 x 46.4 </size>
<name> Doctor X </name> <history>Painted with
<auction> 10.1500.000 <technique> Oil on canvas
</auction></tuple> </technique>in ...
</object> </work>

Figure 1: Sample XML Data for Cultural Goods

access to commercial information about cultural goods
(e.g., www.christies.com). For this application, we
need to integrate two sources: one, highly structured,
is an object database containing trading information;
the other is a partially structured document repository
supporting full-text queries, that contains descriptive
information about artistic work. Figure 1 shows some
sample XML data exported from our sources.

There are several advantages in building this appli-
cation with XML. First, due to its flexible data model,
XML can represent both structured and semistructured
information (see Figure 1). Second, it is easy to convert
any data into XML, and to do so in a generic fashion
(i.e., independently of the source schema). Third, sev-
eral languages support declarative integration of XML
data (e.g., MSL [31], StruQL [17] or YATy [13]). Fi-
nally, being a standard, XML facilitates interoperabil-
ity. Yet, query processing in XML-based integration
systems raises some hard issues.

o Wrapping type information. 'There are certainly
many reasons why preserving type information is
useful, but it is particularly important for query
optimization [20]. Although most data management
systems can now export data in XML, they usually
don’t provide the corresponding type information.
This is mostly because XML’s current form of typing
(i.e., DTDs [6]) is not sufficient to capture rich
type systems (e.g., an object database schema)

or, conversely, partially structured documents (e.g.,
in Figure 1, works might come with mandatory
elements as well as elements not known in advance,
like history or cplace). Several recent proposals
(notably XML Schema [38]) are studying this issue,
but no definitive standard is available yet. In [13],
we introduced a type system, suitable to represent
any mix of well-formed and valid XML data, that
we will use in the rest of paper.

Wrapping source query capabilities. Internet sources
usually do not export data but, instead., provide
query facilities. Thus, in order to integrate them,
one needs to understand their “query language”.
This is also important for performance reasons: by
pushing the processing to the sources as much as
possible, the application avoids massive data trans-
fers and reduces XML conversion overhead. The
only technique proposed so far and that would be
appropriate for XML, comes from the TSIMMIS
system: query templates [33] are used to describe
source capabilities. However, an exhaustive descrip-
tion of sources capabilities (i.e., find all possible
queries given a schema) is not feasible with such
templates. Moreover these imply a costly ad hoc de-
velopment, in order to wrap an appropriate set of
queries for each application.

Processing XML queries efficiently in an integra-
tion context remains an open problem. A well-
understood algebra that supports the peculiarities
of XML languages is missing. Moreover, we need
the ability to exploit partial type information and
heterogeneous source capabilities.

In this paper, we propose an algebraic framework and
optimization techniques to address the last two issues.
More precisely, we make the following contributions:

An algebra for XML. We introduce an operational
model based on a general-purpose algebra for XML.
This algebra is expressive enough to capture most
of the semantics of existing semistructured/XML or
structured query languages.

A source description language. We show how this
algebra can be used to wrap full text queries but also
structured query languages such as OQL or SQL in
a complete (i.e., as a query language and not as a set
of queries) and generic (i.e., with no effort required
from the application developer) way.

Query processing techniques. We show that our al-
gebra is appropriate to optimize integration appli-
cations. Notably, we introduce new rewriting tech-
niques for query composition, investigate the impact
of type information during query processing and il-
lustrate how query evaluation can take advantage of
source query capabilities.

142

logos{simeon}: o2-wrapper -server gringos.inria.fr \

-system cultural \
-base art \
-port 6066

o2-wrapper is running at
logos{simeon}:

logos.inria.fr:6066

sappho{christop}: xmlwais-wrapper
-directory “christop/wais-sources/museum.src \
-port 6060
xmlwais-wrapper is running at sappho.ics.forth.gr:6060
sappho{christop}:
cosmos{cluet}: yat-mediator -port 6666
yat-mediator is running at cosmos.inria.fr:6666

yat> connect o2artifact logos.inria.fr:6066;

yat> connect xmlartwork sappho.ics.forth.gr:6060;
yat> import o2artifact;

yat> import xmlartwork;

yat> load "/u/cluet/YAT/viewl.yat";

Figure 2: Installing Wrappers and Mediators

The paper is organized as follows. Section 2 illus-
trates the advantages of XML integration by explaining
the different steps required to build our example appli-
cation with YAT, our home-brewed integration system.
This section also recalls the specifics of the type system
we are using. Section 3 introduces our algebra. The
description language to wrap source query languages is
presented in Section 4. We present the optimization
techniques in Section 5 and conclude in Section 6.

2 XML integration with YAT

The YAT System is a semistructured data conversion
system [13, 36] that we are currently turning in to a full-
fledged XML integration system. It relies on a library of
generic wrappers and a declarative integration language
called YAT],. Figure 2 illustrates the three steps required
to setup our application example with YAT:

e simeon wraps the Os object database. For this,
he simply needs to run the o2-wrapper program
that can export structural information from any O,
database (e.g., the art database) as well as the
system query capabilities (i.e., it wraps OQL, as we
will see in Section 4).

christop wraps the cultural source with another
generic wrapper. The xmlwais wrapper understands
XML data, typed with our type system and full-
text indexed by Wais [34]. It expects as parameter
a standard Wais source configuration file (e.g.,
museum. src).

cluet runs a yat mediator, connects both wrappers
using the port numbers given by her fellow devel-
opers, imports the structural and query capabilities
of the two connected system and loads her favorite
integration program (e.g., viewl.yat).

Class : |

Float v Sring)

* *

class [Type: |@ (IntvBoolv V@tuple V
Symbol
Symbol Type

Type

The ODMG model

Type

(setVbag V vV @
list varray)

&Class | | YAT: I:ny VvV @&YAT

YAT

|YAT Model

class

artifacts: I:et Artifact :

artifact

&Artifact &Person

owners

list

String

The "Artifact" Schema

&Person

persons: Pe, Person:

class

Iworks ® sring V I Symbol
*
*

Field

Work

auction

Sring

The "Artworks" structure

Figure 3: Oz, XML-Wais and YAT

Before taking a closer look at the integration pro-
gram, we first give the structural information exported
by each wrapper. Note that for interoperability reasons,
wrappers and mediators communicate data, structures
and operations in XML.

The YAT type system can represent structural
information at various levels of genericity (model,
schema, data). The relationship between these levels is
captured through an instantiation mechanism that we
recall here briefly (see [13] for more details). Figure 3
shows a graphical representation of the YAT model along
with the type information imported by our wrappers.

The left hand-side of the figure represent the O,
data model, that conforms to the ODMG standard [9],
and the schema of our art database example. Note
that (i) bold fonts denote pattern (i.e., tree) identifiers,
(ii) the & symbol denotes references, (iii) the x and V
symbols denote respectively multiple occurrences and
alternatives. Thus, an Os type is either an atomic
type. a tuple, a collection or a reference to a class
pattern. A tuple pattern is in turn a collection of sub-
patterns, each associating an attribute name (Symbol)
to its value. Below, the class Artifact is a concrete
instantiation of a Class. whose value is a tuple with
attributes title, year, etc. The lower right part of
the figure represents the information exported by the
xmlwais wrapper. Each document contains mandatory
information (artist, etc), possibly followed by any
additional Fields. This illustrates the ability of YAT
type system to capture partially structured information.

Last, the top right part of Figure 3 shows a repre-
sentation of YAT (meta)model, that captures all pat-
terns. One important property is that the O, model,
Artifacts schema, and Artworks structure are recog-
nized as instances of this almighty model (in fact, we
have Artifact <: ODMG <: YAT). We will see in Sec-
tion 4 that query languages wrapping will also take ad-
vantage of this mechanism.

143

mediator structural metadata

Integration programs in declarative languages are
usually composed of a sequence of rules or queries [31,
17, 13], whose partial results are connected together
through Skolem functions. We give bellow an example
of a YAI query [19. 37]. from our integration program
viewl.yat. This query construct a collection of
documents (artworks), one per known artwork, each
combining the information available in our two sources.

artworks()
MAKE doc * &artwork($t.$c)
work [title: $t, artist: Sa,
year: 3y, price: $p,
style: $s, size: $si,
owners *$o, more: $fields]
MATCH artifacts WITH

set *class: artifact:

tuple [title: $t. year: Sy,
creator: $c, price: $p,
owners: list *class: person:
tuple [name: $o,
auction: $au]],
works WITH
works *work [artist: Sa,
title: $t’, style: $s,
size: $si, *(Sfields)]
WHERE $y > 1800 AND $c = $Sa AND $t = §$t’

This query consists of three clauses. The MATCH
clause performs pattern-matching: filters are used to
navigate through the structure of data and to bind
variables to information of interest (e.g., the artifact’s
title to variable $t, the list of optional XML elements
to $fields). YAT}'’s filtering mechanism relies on
instantiation: if a tree is instance of a filter, then
one can deduce a mapping between node values and
variables. Otherwise, a type error occurs. Note that
for unambiguous filters (i.e., involving unambiguous
regular expressions), this can be done in polynomial
time [4]. The WHERE clause fulfills the usual
function. The MAKE clause constructs the result by
creating a new pattern with the values returned by

the previous clauses. In the example, we build a new
artwork tree for each distinct artifact and group these
subtrees under the doc node. Here, artwork($t,$c)
is a Skolem function, creating a new tree identifiers for
each distinct values of title and creator. Using Skolem
functions allow us to identify (sub)trees and, thus,
to create references. Note that the type information
provided by the wrappers and by the YAI} program
can be used to guide the integration specification,
check application consistency or notify the integration
administrator about source modifications.

Technical challenges in query processing. This
illustrates the simplicity of XML-based integration.
Apart from the quality of structural descriptions pro-
vided by YAT, other semistructured/XML systems (like
TSIMMIS [32] or MIX [3]) would offer similar function-
alities. Still, we have to evaluate user queries in an effi-
cient way. As an invitation to proceed further, assume a
user, after noticing some artworks with a creation place
(cplace), issues the following query:

Q1: What are the artifacts created at “Giverny”?

MAKE $t

MATCH artworks WITH doc.work.[title.$t,
more.cplace.$cl]

WHERE $cl = ”Giverny”

In order to process Q1, we need to address several
problems: how to compose it with the view definition
(note that Q1 accesses the semistructured fields of
artwork documents), how to understand that only
the XML-Wais source is needed to answer the query
and how to exploit the Wais textual queries to avoid
downloading all the documents.

3

The choice of the operational model is essential:
the remainder of the paper, it will be used for the
description of source capabilities as well as for query
optimization. Moreover, it must support the following
requirements:

YAT operational model and algebra

n

Expressive power. It must capture the evaluation of
existing languages, along with their XML-specific
features. Notably complex pattern matching prim-
itives with ordered navigation (like in XQL [35] or
YAT]), recursion and object creation.

Support for flexible typing. XML favors flexibility
and most XML query languages are not typed. Yet,
we also need to wrap structured languages. Thus,
the operational model must support both flexible
type filtering (for Lorel[1] or XML-QL[16]) and more
strict forms of typing (for OQL [9]).

144

Support for optimization. Of course, we also need
an algebra equipped with a number of equivalences
offering interesting optimization opportunities.

We propose a operational model based on a functional
approach, and a fixed set of predefined functions —
the so-called YAT XML algebra. The model allows
composition, function calls, and recursion. Note that
except for Skolem functions, all other functions are
without side-effects. The algebra itself is inspired from
the object algebra of [14]. In this section, we present the
newly introduced operators, required to deal with tree
structures, and only briefly recall the others. We show
how queries are translated in this operational model.
Finally, we give an overview of alternative algebras.

3.1 YAT XML algebra

One of the main characteristics of XML data is that, like
objects, it can be arbitrarily nested. Thus, we adopt
a technique similar to that used for object-oriented
algebras. Starting from an arbitrary XML structure,
we apply an operator, called Bind, whose purpose
is to extract the relevant information and produce a
structure, called T'ab, comparable to a =1NF relation.
On these Tab structures, we can then apply the classical
operators, such as Join, Select, Project, etc. Finally, an
inverse operation to Bind, called Tree, can be used to
generate a new nested XML structure.

The Bind operator extracts data from an input tree
according to a given filter (i.e., a tree with distinct
variables). It produces a table that contains the
variable bindings resulting from the pattern-matching.
On Figure 4, the Bind operation is applied on the
tree representing the XML collection of works, with
a filter that binds for each work its title ($t), artist
($a), style ($s), size ($si) and optional elements (note
that, being on the edge, variable $fields will contain
the collection of such elements). Note the similarity
between the Tab structure and a =1NF relation. The
Bind operator supports type filtering, vertical and
horizontal navigation (through regular expressions —
see $fields in our example). It can be expensive to
evaluate, but we will see in Section 5.1 how to rewrite
a Bind into more simple operations.

The Tree operator is applied on Tab structures
and returns a collection of trees conforming to some
input pattern. On Figure 4, the Tree operation is
applied on the result of the previous Bind (where
F[$t.$a,$s.$s1,$fields] denotes the corresponding
filter). The works are grouped according to the artists’
names (with the grouping primitive *($a)), with each
subtree containing the titles of their works.

Bind Bind operator
works ¢ s § fidds .. s s fidds
* E——
work "Nympheas' | "21x 61" "Waterloo ["29.2x 46.4"
afist title Str\e size "Claude cplace “Claude history
$|a ét & $L Monet” | mpressionist” “Givkrny" Monet” | oressionist”
"Painted with" technique "in.."
works
"Oil on canvas'
Tree
l:(ssa)
artist($a):=
al:="Cezanfie" a2:="Monet"
* (8 _—
8t "Bathers' "Fruits' “Nympheas'
Bind(works, F[$a,$t,ssi $fields]) Tree operator

Figure 4: Bind and Tree operators

Skolem functions are used to create new identifiers
and perform value assignment. In the previous example,
artist($a) :=creates an identifier for each artist name.
Skolem functions do not create values but have side
effects on the integrated view (as in [2]) and are
somehow orthogonal to the rest of the algebra.

The other operators are those of the object algebra
of [14]. Select, Project, Join, Union, Intersection come
from relational. Classical object operations are: Group,
Sort, Map and D-Join (for dependency join) which
is used to navigate within nested collections. Their
definition on T'ab structures rather than collections
of tuples is straightforward. We do not recall their
definition here, but will explain their use whenever
necessary. Except for the Map, these operators are
always applied on the top level of a Tab structure (in a
manner similar to the relational algebra). If one needs
to go deeper, an extra Bind has to be applied.

As most of the algebra is composed of standard
operators, we can take advantage of their well-known
optimization properties and reuse rewriting techniques
proposed in the object context (including relational
ones or those for nested queries [14]). We can remark
that Bind and Tree are two frontier operations that
isolate XML-specific processing from more standard
one. Last, by allowing recursive calls in the algebra
(which was not the case of [14]), we can capture
generalized path expressions (GPE) [11, 1]. The
optimization of GPE is not addressed here (see [12, 20]).

An important aspect is that the YAT algebra is
independent of any underlying physical access structure
and can be used to reason about the evaluation of
XML queries, whether the corresponding XML data
are locally stored (e.g., in a document management
system or an XML repository) or virtually accessed
(e.g., through wrappers as in our context). In Section 5
we will present useful rewritings for both cases.

145

3.2

Figure 5 shows the algebraic translation of the YAI}
view definition presented in Section 2 and of query Q1
(translation of other XML query languages would be
performed in a similar manner!). It has been obtained
using the following translation steps:

YAT], algebraic translation

1.

Named documents (e.g., artifacts) are the input
operations of the algebraic expression.

Each MATCH statement translates into a Bind op-
eration that captures its filtering/binding semantics,
and creates a Tab structure for further processing.

Predicates involving various inputs translate into
Join operations.

. Other predicates in the WHERE clause translate
into Select operations.

5. The MAKE clause translates into a Tree operation.

3.3 Related work

The Lore algebra [27] is a physical algebra, aimed at
the optimization involving indexes. SAL [5] is a logical
XML algebra, but it does not provide the appropriate
expressive power either. The algebra of [18] is both log-
ical and is sufficiently expressive. Yet, the relationship
with our algebra is still unclear. For instance, they pro-
vide a simpler version of the Bind operator in terms
of regular expression matching, while we will see that
our more complex Bind can serve in exploiting source
capabilities. Compared to object algebras, the Bind re-
sembles the Scan operator of [15] (minus the condition,
plus potentially complex patterns). An object algebra
with side-effects operations similar to Skolem functions
is presented in [2].

I Note that translating some particular features, like recursive
structure preservation in XQL, would be more involved.

U W N~

Tree
artworks:= doc
%
artwor k($t,$a):= work
tiile arii yI prlice sflle size owners molre
%
$ $a Sy $p % $si $o $fields
JOIN g gt ana e =sa Treeg
Select i
Sy > 1800 Bind works Select
| * $cp = "Giverny"
Bind s work o (sields) |
d afist title style Size Bind
artifacts éa ét g $si d%
tulple thrk
title yedr creator price owners works litlle more
ST d s
class $cp
pfﬁsf’” artworks
uple
nTﬁEJ%EUMH
) | N "
artifacts s su View definition | Query Q1 |

Figure 5: Algebraization of YAT} queries

4 Wrapping query capabilities

As we explained in Section 2, each wrapper exports its
source capabilities. In this section, we explain how this
information is communicated to the mediator. More-
over, we show how the combination of our operational
model and type system allows to do it at the appropriate
level of genericity: from full query languages (e.g., OQL
on the ODMG model) to sets of queries (e.g., methods
of an O3 schema, textual predicates on XML elements).
Wrapping source operations in YAT is performed
in two steps that concern (i) their signature and (ii)
their semantics. The first step is necessary to be
able to access the operation. For instance, let us
assume that our O, schema features a specific method:
current price on class Artifact. It can be imported
by the O, wrapper using the following XML syntax:

<operation kind="external" name='"current_price'>
<input><value model="Artifact_Schema"

pattern="Artifact"/></input>
<output><leaf label=Float /></output>
</operation>

The input and output elements contain the signa-
ture: current price takes an Artifact and returns a
Float. This declaration is performed automatically by
the Oy wrapper with the help of the Os schema man-
ager. Once the method is wrapped, it can be made
available at the mediator.

The second step is only required for optimization
purposes. In most cases, the wrapper performs both
steps automatically. However, for the sources featuring
operations not captured by the core operational model,
the second step must be done manually. This issue

=

is discussed in Section 5. Now, let us explain more
precisely how to use all this to capture OQL and Wais.

4.1 Describing OQL capabilities

We consider here the description of OQL [9]. Obviously,
SQL [28] can be described in a similar manner (even-
though the wrapper’s implementation is more complex
due to the non-functional nature of SQL).

Capturing binding capabilities. YAT operational
model borrows a large part of OQL algebra [14]. But
if YAT captures OQL, the opposite is not true mostly
for one reason: OQL binding capabilities are more
restricted (e.g., it cannot query schema information).
In order to take this restriction into account, we need
to distinguish between Bind operations that can be
actually evaluated by OQL and those that cannot,
i.e., we need to understand which are the acceptable
filters for OQL. Figure 6 (lines 2 to 33) shows such a
specification of valid filters (that we call a Fmodel). The
Oy Fpatterns are nothing but an XML serialization of
the type patterns of Figure 3, possibly annotated with
flags (attributes bind and inst). When present, flags
correspond to filter restrictions. A bind flag can be used
to indicate that the corresponding node cannot contain
a variable, or only a tree or label variable. A inst flag
can be used to indicate that the corresponding label or
edge must be completely instantiated (ground value)
or left unchanged (none value). For instance, the filter
for Oz classes (Fclass, line 3) imposes that (i) only
subtrees corresponding to actual O objects or values
can be bound (bind="tree", line 4) (ii) extraction of
class schema information is prevented (bind="none",

146

<interface name="o2artifact'>
<fmodel name="o02fmodel">
<fpattern name="Fclass'">
<node label=''class" bind='"tree'">
<node label="Symbol" bind='"none' inst="ground'>
<value pattern="Ftype'"/></node></node>
</fpattern>
<fpattern name="Ftype">
<union>
<leaf label="Int"/>
<leaf label="Bool'"/>
<leaf label="Float"/>
<leaf label="String"/>
<node label="tuple" col='"set'" bind='"tree'>
<star inst=''ground'">
<node label='"Symbol" bind='"none'">
<value label="Ftype'"/></node></star></node>
<node label='"set' col='"set" bind='"tree'">
<star inst='"none'><value label='"Ftype"/>
</star></node>
<node label='"bag'" col='"bag" bind='"tree'">
<star inst='"none'><value label="Ftype'"/>
</star></node>
<node label="list'" bind='"tree">
<star inst='"none'><value label="Ftype'/>

</star></node>
<node label='"array" bind='"tree'">
<star inst='"none'><value label="Ftype"/>
</star></node>
<ref pattern="Fclass"/>
</union>
</fpattern>
</fmodel>

<operation name="bind" kind="algebra'>

<input>

<value model="o02model" pattern="Type"/>

<filter model="o2fmodel" pattern="Ftype'/></input>

<output><value model='"yat" pattern="Tab"/></output>
</operation>
<operation name='"select'" kind="algebra'></operation>
<operation name='"map'" kind="algebra'></operation>
<operation name="eq" kind="boolean'></operation>
</interface>

Figure 6: Os Filter patterns and operational interface

line 5) and (iii) the name of the class in a schema specific
filter has to be instantiated (inst="ground", line 5).

OQL operations. Figure 6 also shows a large part of
the operational interface exported by the O, wrapper
(lines 35 to 43). Each operation has a name (bind, eq,
etc) and a kind (algebra, boolean, external, etc).
The first declared algebraic operation is the Bind
(line 35). Its signature has been specialized using
the already exported Fpattern Ftype (line 8). The
other algebraic operators that O, can evaluate follow
(select, map, etc). We do not need to specialize
their signatures as these operations are always applied
on a Tab structure resulting from a Bind, i.e., on
collection of tuples containing valid ODMG data. Note
that an operation can be pushed only on some data
imported by the source or on the result of a previously

IO Ut W N =

147

pushed operation. Furthermore, all the arguments
of the operation must be pushable. For instance,
a selection can be pushed only with the predicates
(e.g., <=, etc.)) or functions (e.g., the method
current _price) that are understood by Os. In the
case of our integration example, the Bind and Select
operations on the left-hand side of Figure 5 can be
pushed to Oy and translated by the wrapper into the
following equivalent OQL query:

select t: A.title, y: A.year, c: A.creator, p: A.price,
n: O.name, au: O.auction,

from A in artifacts, O in A.owners

where A.year > 1800

4.2

For most sources, one of the basic operation is to ask for
an entry point (a relation, a named object, a document,
etc). However, even this seemingly simple operation is
not always supported. For instance, many Web sites
(e.g., search engines) are only accessible through form-
based query interfaces and do not export their full
content. For these sources, it is capital to understand
the operations they supported even if these are not
captured by the original YAT algebra.

Another apparently straightforward assumption is
that you can retrieve what you query. Again, this is
not always true. The Z39.50 [41] protocol (underlying
the Wais retrieval engine and which is widely used for
digital libraries) is based on attribute/value textual
queries. This protocol establishes a clear separation
between what you may retrieve and what you may
query. For instance, one could specify that only the
artist and style elements can be exported from our
XML documents while allowing queries only on the
optional fields [29]. This can be captured, thanks to
the extensibility of our operational model, by declaring
a predicate for each queried field and exporting them
to the mediator.

Describing Wais capabilities

Importing the query capabilities of an XML-
Wais source. We now show how to wrap the full-
text capabilities of our XML-Wais source (“signature”
step), and how to declare a source-specific equivalence
(“semantic” step). For the first step, we need to: (i)
specify the source Fpatterns, (ii) declare support for
Bind and Select operations, and (iii) declare the full-
text predicate contains supplied by Wais. We give
below the corresponding part of the interface:

<fmodel name='"waisfmodel">

<fpattern name='"Fworks'>
<node label='"works' bind
<star inst='"none">

="none'" inst='"ground'>
<value pattern="work" bind="tree"/>
</star></node>

</fpattern>

</fmodel>

<operation name="bind" kind="algebra">
<input>
<value model="Artworks_Structure" pattern="works"/>

<filter model="waisfmodel" pattern="Fworks'"/>
</input>

<output>

<value model="yat" pattern='"Tab"/></output>
</operation>

<operation name='"select'" kind="algebra'></operation>
<operation name='"contains" kind="external">
<input>
<value model="Artworks_Structure" pattern="Work'"/>
<leaf label=String /></input>
<output><leaf label="Bool'/></output>
</operation>

Note that, as opposed to the O, interface, the
Fpattern here is very restrictive: it only permits to
bind subtrees corresponding to full documents (i.e.,
only work elements). Yet, not much has been achieved
since the mediator does not know the semantics of the
contains predicate, the only one that can be pushed to
this source. Hopefully, some connection exists between
contains and the equality predicate that exists in our
algebra. More precisely, a query asking for works by
impressionist artists could be evaluated by (i) a full-text
search for works containing the string “impressionist”
followed by (ii) a standard evaluation of the equality
predicate within the mediator. This is expressed with
the following equivalence, that we give here in a more
readable form than its original in XML:

Select ($x=%y, Bind(works, works*work[F($x)]))==
Select ($x=%y,Select (contains ($w,$y),
Bind(works, works*work($w) [F($x)]1)))

As expected, the equivalence states that starting from
a selection with equality over the result of a Bind (F($x)
denotes here an arbitrary sub-filter with a variable x),
one can add a more general contains predicate over
the root of the document ($w).

4.3 Related work

In Garlic [24], source capabilities are coded by the pro-
grammer within the corresponding wrapper. They re-
main unknown to the optimizer, that must communi-
cate with the wrappers at optimization/evaluation time
to know what part of the query has been accepted and
what remains to be processed. In Disco [39, 25], the de-
scription of source operations is not typed, which entails
extra work for the optimizer in order to match the gen-
erated plans against the imported query descriptions.
In TSIMMIS [33], optimization opportunities are re-
duced since the interface language is capable of describ-
ing only sets of queries rather than full query languages.
To the best of our knowledge, YAT is the only system
allowing a generic and complete description of query
capabilities for structured sources in such an heteroge-
neous environment.

148

5

As pointed out earlier in the paper, optimization
techniques from relational and object databases [23, 14]
can be applied directly on the corresponding operations
in our algebra. In this section, we introduce rewriting
techniques for the new Bind and Tree operators.

Optimizing with query capabilities

5.1

The Bind operation captures some of the most powerful
features of XML query languages, like vertical and
horizontal navigation, and type filtering. As it is
a potentially expensive operation., it is crucial to
understand how to simplify and/or rewrite a Bind.
First, a simpler Bind has a better chance to be pushed to
a source. Moreover, Bind entails navigation that can be
costly and should be transformed into more traditional
associative access.

XML queries and Bind rewriting

Bind and vertical navigation

The upper left part of Figure 7 shows the binding
operation over artifacts, taken out from the algebraic
translation of our view definition (Figure 5). This Bind
corresponds to a vertical navigation from the set of
artifacts down to their local attributes (e.g., title)
and further down to the information contained in their
Navigation through nested
collections is usually captured in object algebras by a
join whose right input depends on the left (i.e., DJoin
in our algebra [14]). Hence, the equivalence between
Bind and Djoin shown in the upper middle part of
the figure is not surprising: we can see how Bind can
be split into more elementary ones, connected through
a DJoin?. As a reward, we can apply classic DJoin
rewritings and transform navigation into associative
for instance, in the upper right part of the
figure we exploit the persons extent to transform the
DJoin into a standard Join supporting more efficient
evaluation algorithms.

A complex Bind can always be splitted into elemen-
tary Binds (i.e., with only one-level deep filters), con-
nected together through DJoins. Another possibility is
to split a complex Bind into a linear sequence of el-
ementary ones, each one navigating down the result
of the previous one. The lower left part of Figure 7
illustrates this rewriting on the Bind operation over
artworks (part of the Q1 algebraic expression given in
Figure 5). Among other things, this rewriting is useful
to simplify query compositions or push some evaluation
to a source.

assoclated set of owners.

access:

Bind, horizontal navigation and type filtering

The absence of type information is usually bad news.
Indeed. when a Bind operation features a complex filter
and no structural information is available, the only

2Note the introduction of the new variable $x that is removed
afterwards by a projection.

i i Project Project
| From Bind to Join | |J $18y.50.9p 90 5 | 515,50.9p.50 $au
Bind) !
=, DJoin Join ¢, _
u il*‘s £ S =%y
artifacts. E ~ - -
wple Bind s Bind Bind = Bind s,
—_ dass —_
title ye&¥ creator price owners = —— d | = C‘I class($y)
| person
d D ok atifats o atifacts petson
s tuple naﬁ'Lammn ple tple !
pe!lson tltlle yezla' crelelcr pn:)e ov:/lners $Io &lau !mle yealv .;relaor pnre uw?ers T $él:Dn
tuple o gy s % ist, gy s $p it
navﬁ'%umn $!: *
. | | .)
artifacts ® s artifacts $x artifacts persons
| Solitting Binds | if Type(F) =>Type(works) Bind
Proiect simplifications
H concat(att)
Bind Ject ‘
/\ auction
t
_ 4 ol Bind s, Bind s
Bind doc $|cp Bind Bind abes ok
i = Bind, ks (=F) = e plon = petson
titl\e rnolre wJJrk M wark naﬁ;%l nam/et %ion
st cp\lace tiffe molre aréi:”ile st;llle Ize mllean:s $L $\I/a1 $!:> $\|/al
$cp $h $t $s $S st $a
artworks artworks works works persons persons

Figure 7: Algebraic Equivalences

evaluation strategy is to navigate through the whole
data graph. This is usually what happens in purely
semistructured systems. In this case, adding specialized
indexes, like in [27], is the only way to achieve
reasonable performances. Hopefully, we often have
more interesting opportunities, using type information
about the data (coming from the source) or the filter
(coming from the query). This is particularly useful for
queries mixing structured and semistructured data.

Semistructured queries over structured data

By semistructured queries, we mean queries that
access both structure and content, e.g., by using tag
variables or flexible type filtering. To illustrates this
scenario, the lower right part of Figure 7 retrieves
the attribute names of person objects. Because
we have precise type information (see Figure 3), we
can simplify the filter, as shown on Figure 7. Note
this resembles rewriting techniques for generalized
path expressions [12, 20]. This rewriting has several
benefits, the most obvious of which being that the
Bind operation can now be pushed to Os!

Structured queries over semistructured data
Consider the partially structured XML artworks of
our example and assume a user is only interested
in the title and artist elements of artifacts. As
illustrated on the lower middle part of Figure 7,
this corresponds to a projection that can be used to
rewrite the Bind operation and simplify the query.
Doing so, we must be careful not to change the type
filtering semantics of the Bind: a sufficient condition
for the equivalence to hold is for the type of works
to be an instance of the type of the filter.

149

5.2

The Tree operation captures the restructuring seman-
tics of a query or view definition: it features grouping
and sorting which are typically expensive operations.
A Tree can be rewritten as sequence of Group, Sort
and nested Map operations, on which existing optimiza-
tion techniques can be used [14, 10]. Nevertheless, the
evaluation of a Tree will remain costly if applied on
a large amount of data. This is usually not the case
with user queries, but may occur when constructing the
view. Thus, it is very important to eliminate interme-
diate T'ree operations resulting from the composition of
queries with the view definition.

It is now time to go back to the evaluation of query
Q1 (see page 4). The left part of Figure 8 presents
the algebraic translation of Q1 composed with the
view definition. This complex expression corresponds
to a naive evaluation strategy in which the view is
materialized, then the query evaluated on the result.
Fortunately, our XML algebra comes equipped with
all the equivalences we need to rewrite it into the
expression on the right part of the figure. Due to space
limitations, we only sketch the optimization process
here (see [36] for more details).

The first essential step, illustrated by arrows in
Figure 8, is to get rid of the Bind-Tree sequence that
appears at the frontier between view definition and
query. To do so, we first use Bind-Split equivalence
given in Figure 7: this introduces an instantiation
relationship between the filters of the lower Bind and of
the Tree. Given this relationship, a second equivalence
can be used to rewrite the Bind-Tree sequence in a
simple projection with renaming. We are now mostly
dealing with operations on which standard rewritings

XML views and Tree-Bind rewriting

titl€artist™ yéar price sti/le Sze owrfas more
| | | * |

$t $a %y $ S $si $o $fields

lower

Tree
| $t
Select Bind
| $cp = "Giverny” /I\h Tree
. t
Bind
diﬁ ${ cpllace
work
N L . P — Select
“1||e history Bind doc $cp = "Giverny"
$t cpllace Q Q]_ !)* |
$cp II{}OTE pu— Pr Oj ect Bind works
Tree & e $t, $hifields i
artworks:= do.f work
artwork($t $a):= work - [it(hace
|
8t &

works

part of the
view definition

|View Definition (see Figure 5) |

Figure 8: Optimization of Q1

apply. Because all artifacts are available in the XML
source, we can push the projection down and: (i)
eliminate the branch corresponding to the O, source,
(ii) simplify the Bind on the XML source. Finally,
using the Bind-Split equivalence in the other way, we
can merge the remaining filters to obtain the final
expression. Note that we could further optimize the
query by using the XML source full text capabilities:
this is the subject of the next section.

5.3

Exploiting source capabilities during query processing is
definitely the most important technique in a distributed
context. Indeed, pushing some of the query evaluation
to an external source allows: to reduce the processing
time by using source specific indexes or similar fast
access structures; to minimize the communication costs

Capability-based rewriting

between the sources and the mediator, as well as the
conversion costs to the middleware model; to limit
the system resources (e.g., memory) required by the
mediator; and to benefit from possible parallelism
introduced by remote query execution. The next
example shows how description of source capabilities
from Section 4 can be used during optimization.

Q2: Which impressionist artworks are sold for less

than 200,000.007

MAKE *answer [title:$t, artist:$a, price:$p]

MATCH works WITH doc *work [title:$t,artist:$a,
price: $p,style: $s]
WHERE $p < 200000 AND $s = ”Impressionist”

The algebraic translation of the query is shown
on the left-hand side of Figure 9, along with the
equivalence that transforms the Bind- Tree sequence into
a Project operation. The optimized version, shown
on the right-hand side, would be evaluated in the
following way: first, the XML-Wais source (lower left

part) is asked for all artworks containing the string
“Impressionist”. Next, a second Bind is applied to
extract the title, artist and style elements from the
selected artworks. Then, for each pair of title and artist,
the Oy source is called to retrieve the corresponding
artifact information. This aspect is due to the Djoin
operation that corresponds to a nested loop evaluation
with values of variables $t and $a passed from the left-
hand side to the right-hand side. Such “information
passing” is a classical technique in distributed query
optimization [30, 21].

Now, to obtain this plan., the optimizer performs
several rounds of rewritings. The first round is quite
similar to the one we gave for query Q1: after the Bind-
Tree simplification, the projection is used to simplify
the Bind on each source and selections are pushed. The
goal of the second round of rewritings is to push as much
evaluation as possible to the sources. On the O, side,
little work is required since, as explained in Section 4.1,
both Bind and selection can be trivially transformed
into an OQL query. On the XML-Wais side, the
optimizer tries to match the Bind operation with the
Wais capabilities that have been declared. As, the only
possibility is to push a simple Bind on XML documents
along with a contains predicate, the optimizer: (i)
introduces a Select with contains and (ii) splits
the Bind to match the Wais capabilities description.
The first step requires the equivalence declared in
Section 4.2, connecting the selection with equality and
the selection with contains. The second step simply
uses the Bind-Split equivalence given in Figure 7.
Finally, a last round of optimization determines possible
information passing between sources and it is based on
standard rewritings between Joins and Djoins.

6

We have presented a framework for efficient query
evaluation in XML integration systems. It relies on

Summary

150

Tree [*

answer
tiire/aﬂ}ﬂ\pnoe
|
s % gp
Select
$s="Impressionist" and
| $p < 2000000

Bind

work Project

Tree artworks:= doc
*

artwork($t $a):= work

it amlsi Y prllce srle size cwnlevs more
1 [|
$t $a %y $ $s $te $o $fields|

lower
part of the
view definition

) X
WERE Py - L e 3asp 8
LT Query Q2

& $a
DJoin
/ 8, $a
Select
| $s="Impressionist”
Bind |«
I Select
zlx 2\/ >1800 andand
< 2000000
e $Ip=$t‘ and $c =$a
a{tist title style
| .
$a 8t $s Bind -
————————— 1 %
Select] a %Es
contains("Impressionist”,$w) : a’llflacts
. tuple
Bind |
works title creator price
" | & o s
Sw
—_— . — -
works Ir Wais|| artifacts Ir 02

Tree [Pushed operations |

answer 0000 b ————— |

titre anis price

Figure 9: Algebraic translation and optimization of Q2

a general purpose XML algebra that captures the
expressive power of semistructured or XML query
languages and that can be used to wrap structured
languages such as OQL or SQL. This algebra comes
with equivalences to optimize of query compositions, to
exploit type information and to push query evaluation
to the external source. This work takes place within the
context of the YAT System [36], currently developed at
Bell Labs and INRIA3. The new XML version of the
system, with its algebraic evaluation engine, is running
and stable. The implementation of the optimizer is
still on-going, based on heuristics and a simple linear
search strategy consisting of the three rewriting rounds
presented in last section.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. L. Wiener. The lorel query language for
semistructured data. International Journal on Digital
Libraries, 1(1):68-88, Apr. 1997.

[2] S. Amer-Yahia, S. Cluet, and C. Delobel. Bulk loading
techniques for object databases and an application
to relational data. In Proceedings of International
Conference on Very Large Databases (VLDB), New
York, Aug. 1998.

[3] C. K. Baru, A. Gupta, B. Ludascher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu. XML-
based information mediation with MIX. In Proceedings
of ACM SIGMOD Conference on Management of Data,
pages 597-599, Philadelphia, Pennsylvania, June 1999.
Demonstration.

[4] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data. In
Proceedings of International Conference on Database
Theory (ICDT), Lecture Notes in Computer Science,
Jerusalem, Israel, Jan. 1999.

3http://wwu-rocq.inria.fr/~simeon/YAT/

151

[5] C. Beeri and Y. Tzaban. SAL: An algebra for

semistructured data and XML. In International
Workshop on the Web and Databases (WebDB’99),
Philadelphia, Pennsylvania, June 1999.

[6] T.Bray, J. Paoli, and C. M. Sperberg-McQueen. Exten-

sible markup language (XML) 1.0. W3C Recommen-
dation, Feb. 1998. http://www.w3.org/TR/REC-xml/.

[7] P. Buneman, S. B. Davidson, K. Hart, G. C. Overton,

and L. Wong. A data transformation system for
biological data sources. In Proceedings of International
Conference on Very Large Databases (VLDB), pages
158-169, Zurich, Switzerland, Sept. 1995.

[8] M. J. Carey, L. M. Haas, P. M. Schwarz, M. Arya, W. F.

Cody, R. Fagin, M. Flickner, A. Luniewski, W. Niblack,
D. Petkovic, J. Thomas II, J. H. Williams, and E. L.
Wimmers. Towards heterogeneous multimedia informa-
tion systems: The garlic approach. In Research Issues
in Data Engineering, pages 124-131, Los Alamitos, Cal-
ifornia, Mar. 1995.

[9] R. G. Cattell. The Object Database Standard: ODMG

2.0. Morgan Kaufmann, 1997.

[10] S. Chaudhuri and K. Shim. Including group-by in

query optimization. In Proceedings of International
Conference on Very Large Databases (VLDB), pages
354-366, Santiago de Chile, Chile, Sept. 1994.

[11] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl.

From structured documents to novel query facilities. In
Proceedings of ACM SIGMOD Conference on Manage-
ment of Data, pages 313-324, Minneapolis, Minnesota,
May 1994.

[12] V. Christophides, S. Cluet, and G. Moerkotte. Eval-

uating queries with generalized path expressions. In
Proceedings of ACM SIGMOD Conference on Manage-
ment of Data, pages 413-422, Montreal, Canada, June
1996.

[13] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your

mediators need data conversion! In Proceedings of
ACM SIGMOD Conference on Management of Data,
pages 177-188, Seattle, Washington, June 1998.

[14]

[15]

[16]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

(23]

[26]

S. Cluet and G. Moerkotte. Nested queries in object
bases. In Proceedings of International Workshop on

Database Programming Languages, pages 226-242, New
York City, USA, Aug. 1993.

S. Cluet and G. Moerkotte. Query processing in the
schemaless and semistructured context. unpublished,
1996.

A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy,
and D. Suciu. XML-QL: A query language for XML.
Submission to the World Wide Web Consortium, Aug.
1998. http://www.w3.org/TR/NOTE-xml-ql/.

M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu.
Warehousing and incremental evaluation for web site
management. In Proceedings of 14"€™% Journées
Bases de Données Avancées, Hammamet, Tunisie, Oct.
1998.

M. F. Fernandez, J. Siméon, D. Suciu, and P. Wadler.
A data model and algebra for XML query. Communi-
cation to the W3C, Jan. 2000.

M. F. Fernandez, J. Siméon, and P. Wadler (editors).
XML query languages: Experiences and exemplars.
Communication to the W3C, Sept. 1999.

M. F. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. In Proceedings
of IEEE International Conference on Data Engineering
(ICDE), Orlando, Florida, Feb. 1998.

D. Florescu, A. Y. Levy, 1. Manolescu, and D. Suciu.
Query optimization in the presence of limited access
patterns. In Proceedings of ACM SIGMOD Conference
on Management of Data, Philadelphia, Pennsylvania,
May 1999. to appear.

G. Gardarin, S. Gannouni, B. Finance, P. Fankhauser,
W. Klas, D. Pastre, R. Legoff, and A. Ramfos. [RO-DB
: A distributed system federating object and relational
databases. In Object Oriented Multibase Systems :
A Solution for Advanced Applications. Prentice Hall,
1995.

G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170,
June 1993.

L. M. Haas, D. Kossmann, E. L. Wimmers, and
J. Yang. Optimizing queries across diverse data

sources. In Proceedings of International Conference on
Very Large Databases (VLDB), pages 276-285, Athens,
Greece, Aug. 1997.

O. Kapitskaia, A. Tomasic, and P. Valduriez. Dealing
with discrepancies in wrapper functionality. In Actes
des 13'°™° Journées Bases de Données Avancées
(BDA’97), pages 327-349, Grenoble, France, Sept.
1997.

L. Liu, C. Pu, and Y. Lee. An adaptive approach
to query mediation across heterogeneous information
sources. In Proceedings of International Conference on
Cooperative Information Systems (CooplS), pages 144—
156, Brussels, Belgium, June 1996.

152

(27]

(28]

[29]

(30]

[31]

(32]

33]

[34]

[33]

[36]

37]

(38]

[39]

[40]

[41]

J. McHugh and J. Widom. Query optimization for
XML. In Proceedings of International Conference on
Very Large Databases (VLDB), Edinburgh, Scotland,
Aug. 1999. to appear.

J. Melton and A. R. Simon. Understanding the New
SQL: A complete Guide. Morgan Kaufmann, 1993.

A. Michard, V. Christophides, M. Scholl, M. Stapleton,
D. Sutcliffe, and A.-M. Vercoustre. The aquarelle
resource discovery system. Computer Networks and
ISDN Systems, 30(13):1185-1200, Aug. 1998.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1991.

Y. Papakonstantinou, S. Abiteboul, and H. Garcia-
Molina. Object fusion in mediator systems.
Proceedings of International Conference on Very Large
Databases (VLDB), pages 413-424, Bombay, India,
Sept. 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J.Widom.
Object exchange across heterogeneous informa-
tion In Proceedings of IEFE International
Conference on Data Engineering (ICDE), pages 251—
260, Taipei, Taiwan, Mar. 1995.

Y. Papakonstantinou, A. Gupta, H. Garcia-Molina,
and J. D. Ullman. A query translation scheme for
rapid implementation of wrappers. In Proceedings
International Conference on Deductive and Object-
Oriented Databases (DOOD), volume 1013 of Lecture
Notes in Computer Science, pages 97-107. Springer-
Verlag. Singapore, Dec. 1995.

U. Pfeifer. free WAIS-sf. University of Dortmund, 0.5
edition, Oct. 1995.

J. Robie, J. Lapp, and D. Schach. XML query language
(XQL). Workshop on XML Query Languages, Dec.
1998. W3C.

In

sources.

J. Siméon. Intégration de de données
hétérogénes (Ou comment marier simplicité et efficac-

ité€). PhD thesis, Université de Paris XI, Jan. 1999.

J. Siméon and S. Cluet. Design issues in XML
languages: A unifying perspective. Draft manuscript,
Oct. 1999.

H. S. Thompson, D. Beech, M. Maloney, and N.
Mendelsohn. XML schema parts 1: Structures. W3C
Working Draft, Sept. 1999.

A. Tomasic, L. Raschid, and P. Valduriez. Scaling
heterogeneous databases and the design of disco.
Proceedings of the 16th International Conference on
Distributed Computing Systems, pages 449-457, Hong
Kong, May 1996.

L.-L. Yan, M. T. Ozsu, and L. Liu. Accessing het-
erogeneous data through homogenization and integra-
tion mediators. In Proceedings of International Con-
ference on Cooperative Information Systems (CooplS),
Charleston, South Carolina, June 1997.

sSources

In

Information retrieval (z39.50): Application service
definition and protocol specification. NISO Press,
Bethesda, MD, 1995. ANSI/NISO Z39.50-1995.

