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ABSTRACT

We present an archiving technique for hierarchical data
with key structure. Our approach is based on the no-
tion of timestamps whereby an element appearing in
multiple versions of the database is stored only once
along with a compact description of versions in which
it appears. The basic idea of timestamping was dis-
covered by Driscoll et. al. in the context of persistent
data structures where one wishes to track the sequences
of changes made to a data structure. We extend this
idea to develop an archiving tool for XML data that
is capable of providing meaningful change descriptions
and can also efficiently support a variety of basic func-
tions concerning the evolution of data such as retrieval
of any specific version from the archive and querying
the temporal history of any element. This is in contrast
to diff-based approaches where such operations may re-
quire undoing a large number of changes or significant
reasoning with the deltas. Surprisingly, our archiving
technique does not incur any significant space overhead
when contrasted with other approaches. QOur experi-
mental results support this and also show that the com-
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pacted archive file interacts well with other compression
techniques. Finally, another useful property of our ap-
proach is that the resulting archive is also in XML and
hence can directly leverage existing XML tools.

1. INTRODUCTION

Scientific databases exist to disseminate the latest re-
search in some area. However, since other research is
based on the content of the databases, it is also impor-
tant to create archives containing all previous states of
the data. Failure to do this means that scientific evi-
dence may be lost and the basis of findings cannot be
verified. The onus of keeping archives typically falls
on the producers of the data, but there appear to be
no general techniques for keeping long-term archives or
for efficient retrieval from those archives. As an ex-
ample of the issues involved, consider two widely used
data in genetic research: SWISS-PROT [1], a protein
sequence database, and On-line Mendielian Inheritance
on Man [14] (OMIM), a database of descriptions of hu-
man genes and genetic disorders. Both databases have
a similar hierarchical structure and both are heavily cu-
rated, i.e. they are maintained with extensive manual
input from experts in the field. In the case of SWISS-
PROT, a new version is produced approximately ev-
ery four months, and all old versions are archived. In
the case of OMIM, a new version is produced every
day or more often, but only occasionally is a (printed)
archive produced. In OMIM, not enough editing infor-
mation is maintained to reconstruct the exact state of
the database at an arbitrary time in its history. These
examples illustrate the obvious trade-off between the
frequency with which the database is “published” and
the space required for complete archiving. Even if the
space issue is not critical, there is the issue of the effi-
ciency with which one can query the temporal history
of some part of the database. For example, in looking
at the history of a component of one of these genomic
databases, one might well want to know when a given
observation first appeared or when some attribute last
changed. SWISS-PROT and OMIM are two contrasting
examples of archiving practices. A search of scientific
data available on the Web (e.g. [3]) shows that archiv-
ing is a ubiquitous problem. Even databases of physical
constants [16] are less “constant” than one might naively
imagine.



A popular approach to keep all versions of data is to use
diff-based technique [24, 5, 10, 19, 20, 6]. A sequence
of edit scripts is stored so that one can roll back to any
version. There are two problems with this approach.
First, as a document goes through many versions, it be-
comes increasingly costly to recover an old version by
undoing the sequence of edit scripts. The second issue
is semantic: the minimal edit may violate some notion
of “object” continuity. As an example, suppose that the
versions of the database are instances of Person(Name,
DateOfBirth, Address, Zip). If two individuals exchange
houses, a diff algorithm might explain the change as
two individuals changing their names and dates of birth.
This does not matter if we are only interested in obtain-
ing instances of the entire database, but it does matter if
we want to recover the temporal history of components
of the database. This example indicates that there is
a temporal invariance of keys that should be captured
by an archiving system in order to arrive at meaningful
change descriptions of “objects”. In the archiving tech-
nique we are going to describe shortly, we are able to
match “objects” across versions before computing the
difference. Hence for the above example, we are able to
detect that each individual has changed his address.
We are going to describe an archiving technique that
works well for a variety of scientific data. Many such
databases are kept in hierarchical data formats and they
typically have two other properties that we shall capital-
ize on. First they are accretive. Most changes are addi-
tion of data. Existing data may be modified or deleted,
but such changes are relatively infrequent. Second, they
have a hierarchical key structure. There is a constraint
on the data that allows each node in the hierarchy to be
uniquely identified by the path in which it occurs and
the values of some of its subelements. This is analogous
to the key systems in relational databases where every
tuple in a database can be uniquely identified by the
name of the relation it belongs and the values of its key
attributes. We have found that well-organized scientific
data and various domain-specific hierarchical data for-
mats usually support such a structure. Our archiver
leverages these properties and effectively stores multi-
ple versions of hierarchical data in a compacted archive
using the following techniques:

e Merging versions based on keys. In contrast
to the diff approach which stores edit scripts, we
merge all the versions into one hierarchy. An ele-
ment may appear in many versions, but we iden-
tify those occurrences of the same element based
on keys, and store it only once in the merged hi-
erarchy. A timestamp describing the sequence of
versions in which an element appears are stored
with that element. Since changes to our database
are largely accretive and an element is likely to
exist for a long time, we can compactly represent
its timestamps using time intervals rather than a
sequence of version numbers.

e Inheritance of timestamps. Conceptually, a
timestamp is stored with every element to indicate
a set of version in which it existed. In reality, a

timestamp is stored at a child element only when
it is different from the timestamp of its parent
element.

Example. A simple example illustrates how the archiver
works. Figure 1 shows a sequence of versions of a com-
pany database. Each version of the database consists
of information about its employees and the company
address. Every employee can be uniquely identified by
his employee id, i.e. id is the key for employees. Each
employee also has one name, one salary value, and op-
tionally one telephone number. In addition, a version
number is assigned to each version (in this example, 1,
2, 3), and the root node of each version is annotated
with a timestamp including that version number.
Figure 2 shows how those versions can be merged into
one compact archive by “pushing down” timestamps.
We first start at the top-level, and determine the nodes
that correspond to one another across all versions ac-
cording to their key values. (At top-level, each version
has only one root node and they correspond to one an-
other.) We merge corresponding nodes together, anno-
tate the resulting node with timestamps of all merged
nodes and push the timestamp of each merged node
down their respective subtrees. We recursively invoke
this procedure for the children of merged nodes until
we reach the leaves.

Observe that in the resulting archive in Figure 2, nodes
appearing in many versions are stored only once in the
archive. If a node occurs in version %, then the times-
tamp of the corresponding node in the archive contain
1. We use time intervals to describe the sequence of ver-
sions for which a node exists. For example, the time
intervals [1-3,5,7-9] denotes the set 1,2,3,5,7,9. A node
that does not have a timestamp is assumed to inherit
the timestamp of its parent. For example, the name
node under the emp (t=[2-3]) inherits the timestamp
t=[2-3].

Observe that it is a property of the archive that the
timestamp of a node is always a superset of timestamps
of any descendant. This archive can be represented in
XML, as shown in Figure 2. For example, employee Joe
has a timestamp tag <T t="2-3"> around it, indicating
that the entire subtree within exists in versions 2 and
3. Furthermore, during these times, Joe has salary 22k
at version 2 and 30k at version 3.

We may assume that the tag T is in a different names-
pace [26]. It is also easy to see that to reconstruct any
previous version, all we need is a simple scan through
this document. Notice that information on changes is
grouped by elements in this structure while informa-
tion on changes is grouped by time in the diff approach.
Also, our archive ignores the order among elements with
keys. If Ann occurs again in version 4 after Bob, it will
still be represented in the archive before Bob.

There are two immediate caveats about this approach.
First, what happens if the data does not have a key sys-
tem, i.e. there are nodes that cannot be uniquely identi-
fied by their paths and any subelements? We have found
that most scientific data sources have a well-organized
key system. However, there are also cases in which we
cannot define appropriate keys for all the nodes down



Figure 1: A sequence of versions

<T t="1-3">
<db>
<address>...</address>
<T t="2-3">
<emp><id>1</id>
<name>Joe</name>

<sal><T t="2">22k</T><T t="3">30k</T></sal> </emp> </T>

<T t="2">
<emp><id>2</id>
<name>Ann</name>
<sal>20k</sal>
<tel>2345</tel> </emp> </T>
<T t="3">
<emp><id>3</id>
<name>Bob</name>
<sal>2bk</sal> </emp> </T>
</db>
</T>

emp (t=[2])

emp (t=[3]),

Figure 2: “Pushing” time down. Example of an archive.

to the leaves. For example, some data may be free text
represented as a sequence of <line> elements and some
<line> elements may have same text value. Even in
such a case, provided the upper nodes in the tree have
keys, we can still “push down” the timestamps in the
upper part, and stop, or start to use a conventional diff,
when we reach elements without keys, such as <line>
elements in the example above. In fact, if the entire
document does not have appropriate keys, our archiv-
ing technique is the same as the SCCS approach [21]
(see also Section 6). The second caveat is whether the
new structure really is smaller than the accumulated
past versions. Here we capitalize on the fact that the
time sequences associated with elements can be com-
pactly represented as a small number of intervals and
are often inherited from a parent element.
Contributions. We extend the technique of Driscoll
et. al. [9] (See Section 6) and develop an archiving tool
for XML data, which compacts a sequence of versions
into a single XML document. We show that our ap-
proach is viable and comes with several benefits:

e We show that the compacted archive can be con-
structed efficiently, i.e. a new version can be effi-
ciently merged with an existing archive.

o We show, experimentally, that the space overhead
for the compacted archive is comparable to the
traditional incremental diff approach.

e We also establish experimentally that the com-
pacted archive works well — in fact better than
compressing diffs — with XML compression [12].

o We show that since the structure of our archive

is conceptually meaningful, we can easily define
index structures on top of the archive to efficiently
support various basic operations such as retrieving
a past version and finding the temporal history of
an element.

For example, on the basis of our experimental find-
ings for OMIM, which is not adequately archived (we
recorded 100 versions over 100 days) we predict that we
should be able to construct a compacted archive for a
year in less than 1.12 times the space of the last version.
Moreover the archive, under a XML compression tool,
will compress to 40% of the size of the last version.
Organization. This paper is organized as follows. The
next section describes keys for XML, which we use to
identify “objects” in an XML document. Section 3 de-
scribes the main components in our basic archiver and
experimental results follow in Section 4. Section 5 de-
scribes how one can efficiently retrieve a version or the
temporal history of an element using our archive repre-
sentation. Related work and conclusions follow.

2. KEYSFOR XML

Keys for an XML document allow one to identify “ob-
jects” in the document. We use keys to identify the
same “object” across all versions and the same “object”
is stored only once in the archive.

Various forms of keys specification have been proposed
for XML, for example, in XML standard [25] and XML
Schema [27]. We use the system of key specification
developed in [15] mainly because it provides a generic
method for specifying relative keys. Relative keys allow
one to define keys in a specified scope and hence one



can define a hierarchical set of keys, some of which are
relative to others. Here, we briefly review the concept
of keys developed in [15].
XML Model. We model an XML document as a tree
whose nodes are labeled with (1) tag name (E-nodes),
(2) attribute name, value pair (A-nodes), or (3) data
values only (T-nodes). Only E-nodes can be internal
nodes.
Value Equality. The value of a T-node is its data
value. The value of an A-node is a pair consisting of
its attribute name and attribute value. The value of
an E-node consists of its tag name and two things: (1)
a possibly empty list of values of its E and T children
nodes according to the document order, and (2) a pos-
sibly empty set of values of its A children nodes. Two
nodes are value equal if they agree on their value, i.e,
the trees rooted at the nodes are isomorphic by an iso-
morphism that is identity on string values. Finally, =,
denotes value equality.
Path Expression. A path expression is a sequence of
node names — tag or attribute names. Our path lan-
guage consists of the following: (1) the empty path “€”,
(2) a node name, and (3) the concatenation of paths
P/@Q where P and @ are paths defined by these rules.
We use “/” as the path concatenator just as XPath [8]
uses it as a location step separator. In XPath, “/” alone
or at the beginning of an XPath expression selects an
element above the document root. We disallow concate-
nations where @ begins with “/”.
Key. A keyis a pair (Q, {Pi,..., Pc}) where Q and
P;, i € [1,k] are path expressions. Informally, @ (target
path) identifies a target set of nodes reachable from some
context node and this target set of nodes satisfy the key
constraints given by the key paths, P;, ¢ € [1,k]. This is
analogous to relational database where @ is a relation
name and P; form the key for that relation. A formal
definition is given below. We denote by n[P] the set of
nodes reachable from node n via path P.
Definition. A node n satisfies a key (@, {P1,...,Pr})
iff each P; is required to exist and is unique for any node
in n[@Q] and for any ni,n2 in n[Q], if for all ¢ € [1,k]
n[P;] =, n2[P;] then nq = n2. That is,
o Vn' € n[Q], n'[P;] exists and is unique for every i €
[1, k]
eVni, ny € n|[Q]| ( /\ n1|[Pi]] = n2|[P7;]]) — N1 =n2
1<i<k

In the definition above, =, denotes value equality and =
denotes node equality (whether two nodes are the exact
same node).

Example. The node <DB> below does not satisfy the key
(A,{B}) but satisfies the key (A,{C}).

<DB>
<A><B>1</B><C>1</C></A> <A><B>1</B><KC>2</C></A>
</DB>

Relative Key. Keys as discussed above are defined
with respect to some node. We often would like to de-
scribe the key of some node dependent on the key of
an ancestor node much like weak entities in relational
databases [17]. For example, the key of a weak en-
tity consists of its parent’s key and its key (e.g. course

Math120, section B). Such dependent keys can be ex-
pressed through relative keys as defined below.
Definition. A document satisfies a relative key
(Q,(Q’',S)) iff for all nodes n in [Q], n satisfies the key
(@, S).

@’ identifies the target set relative to the contexrt path
Q. Q is always defined with respect to the document
root. In other words, “/” is always a prefix of Q.

The key (Q, (Q',S)) is different from (¢,(Q/Q’, 5))-
The former defines the key (Q',S) with respect to a
node reachable by path @ from the root. In other
words, within each node reachable by path @ from the
root, the set of nodes reachable by path Q' from that
node must have distinct S values. The latter defines
the key (Q/Q’, S) with respect to the root node. All
nodes, reachable by path Q/Q’ from the root, must have
distinct S values. Observe, however, that if a docu-
ment satisfies the key (6,(Q/Q’, S)), it must also satisfy
the key (Q,(Q’,S)). However, the converse is not al-
ways true. Observe also that whenever we have a key
(Q:(Qla{Pla srey Pk})): the keys (Q/Qla(Ph{}))a i€ [15 k]
are implied.

For the rest of the paper, we use the word key to mean
a relative key.

Keys for Company Database. The company database
shown before satisfies the following constraints which
can be expressed as keys.

e (/,(db,{})). There is at most one db element at
the root.

e (/db,(address,{})). There is at most one address
under db node.

e (/db,(emp,{id})). Every employee within a db el-
ement can be uniquely identified by his id subele-
ment.

® (/db/emp,(name,{})), (/db/emp,(sal,{})),

(/db/emp,(tel,{})). There can be at most one name
node for each employee. Similarly for sal and tel.

The example here consists of mostly keys with empty
key paths. In the keys that hold for our experimental
scientific data, keys are more complex. We remark that
for documents which are standard and consistent repre-
sentations of relations in XML, the set of keys can be
automatically generated from the relational schema.

Some Terminology. We say a node is keyed if it
has a key. In other words the sequence of tag names
from root to this node is equal to the concatenation
of context and target path of some key. Given a key
(Q,(Q',{P,..., Pr})) and a keyed node with path Q/Q’,
the value v; rooted under the path P;, 7 € [1,k] of the
keyed node is a key path value and the keyed node has
the key value {P1 = vi,..., P, = vx}. Given a set of
keys, we consider the paths given by the concatenation
of context and target paths for every key in the key
specification. We say a path in this set is a frontier path
if and only if it is not a proper prefix of some other
path in the set. A node is a frontier node if and only
if the sequence of tag names from root to that node
equals to some frontier path. In other words, a frontier



Figure 4: Annotated representation of version 3

node is the deepest possible keyed node. For exam-
ple, the key specification given above has frontier paths
/db/address, /db/emp/id, /db/emp/name, /db/emp/sal
and /db/emp/tel. name is a frontier node but emp is not.
Obviously, there can be unkeyed nodes beyond frontier
nodes. For example, there may be firstname and last-
name nodes under name nodes. Observe that frontier
paths correspond to keys with empty key paths.

Assumptions about Key Structure. We make three
assumptions about keys. First, we assume our keys are
defined level-by-level. In other words, all keys are de-
fined relative to its parent (not grandparent, etc.). For
example, to identify a name node which lies on the path
/db/emp/name requires one to first identify the correct
db and emp nodes. Our second assumption is that given
a set of keys which a document satisfies, any node that
does not occur beneath frontier nodes is keyed. For
example, there cannot be an email subelement directly
under emp nodes. In other words, we assume that our
keys “cover” all nodes that do not occur beneath frontier
nodes. Our last assumption is that nodes beneath some
key path cannot be keyed. That is, we assume that there
cannot be a key (Q1,(Q%,{P1,...,Px})) where k > 1
and another key (Q2,(Q5,{...})) such that Q1/Q1/P;
for some i € [1, k] is a proper prefix of Q2/Q%. The last
assumption is necessary to ensure that key values do
not change as a result of reordering keyed nodes (When
nodes are merged into the archive, they may occur in a
different order from that in the version). Although these
assumptions may seem restrictive, we note that our ex-
perimental data naturally adhere to these assumptions.

3. MAIN MODULES

In this section, we will describe our main modules, An-
notate Keys and Nested_Merge. Our archiver takes a
new version, an archive, and a key specification as in-
put. The new version and archive are assumed to obey
the same key specification. Annotate_Keys annotates all
the keyed elements in the version and the archive with
their key values so that every element can be distin-
guished by its annotation. Then, Nested_Merge merges
the annotated version and archive together into a new
archive. Figure 3 illustrates this architecture.

3.1 Annotate Keys

As a preprocessing step for Nested_Merge, we first an-
notate each keyed node in an XML document with its
key value so that each node can be uniquely identified
by its path and key value. For example, Annotate_Keys

Data Size No. of Nodes | Height
OMIM 27.0MB 206466 5
SWISS-PROT | 436.2MB 10903568 6
XMark 11.4MB 184974 12

Table 1: Various statistics of our data

will transform version 3 in Figure 1 into the represen-
tation shown in Figure 4. Observe that emp nodes are
annotated with their key values, for e.g. emp(id=1). We
omit the id subelement of emp because they are already
stored as annotations. The resulting tree is such that
every keyed node can be identified by the path from
the root to that node by taking into account the an-
notations as well. Nested Merge, described in the next
section, can then easily identify nodes in the archive
and new version that correspond to each other based on
those paths.

Keyed nodes can be annotated with its key values with a
simple scan through the document. As we scan through
the document in document order (preorder), we memo-
rize the value under a key path whenever we encounter a
node containing a key path value. By the time, we exit
a keyed node, we would have its key value (all the key
path values) and hence, we could store the key value at
the keyed node. The procedure for annotating keys for
an archive is similar to that for a version except that
one has to also handle the timestamps in an archive.
Since copying key values to a keyed node can increase
the size of the document, especially when key values are
large XML values, we have a technique for computing
a small fingerprint of a key value and keyed nodes can
be annotated with its fingerprints instead of actual key
values. The full algorithm is described in detail in [2]
and we omit the discussion here.

3.2 Nested Merge

The core module in our archiving system is the Nested
Merge module. Nested_Merge takes as input the an-
notated archive and the new version, and produces as
output another archive which now contains information
about the new version. The main idea behind nested
merge is to first identify elements or nodes that corre-
spond to each other in the archive and incoming version
through keys. A node in the incoming version is merged
into the corresponding node in the archive during the
merge process. Whenever a node is merged into the
archive, the set of timestamps associated with that node
in the archive is augmented with the new version num-
ber. Nodes in the version that do not have correspond-
ing nodes in the archive are simply added to the archive
with the new version number as timestamp. Nodes in
the archive that do not have corresponding nodes in the
incoming version will not have the new version number
in their timestamp.

Example. Figure 5 shows an example of nested merge
when version 3 of Figure 1 is merged into the archive
containing versions 1 and 2. The arrows indicate the
correspondences between elements, identified through
the set of keys given in Section 2. Notice that the node
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Figure 3: Main modules in our archiver

emp(id=3) in the new archive contains only the times-
tamp t=3 since it does not have a corresponding node
in the old archive.

The pseudocode of the algorithm is described below.
We assume the annotated archive contains versions 1
through ¢ — 1 and the annotated incoming version is a
document containing version ¢. To simplify discussion,
we assume that elements, except timestamp elements,
do not contain attributes. The pseudocode below as-
sumes that the archive is non-empty. When an archive
is first created with one version, we simply add a times-
tamp to the root of that version. For any node x in the
archive, let t(z) denote the timestamps annotated on
node z. Let I(z) denote the label and key value of node
z. Let v(x) denote the XML value rooted at node z and
including z and v~ (z) denote the XML value rooted
at node z but not including . We call the algorithm
Nested_Merge(ra,rp,{}), where r4 and rp are the root
node of the archive and the new version, respectively.
The last argument contains an inherited timestamp, ini-
tially empty.

Algorithm Nested_Merge(z,y,T")

If t(x) exists then add ¢ to t(z) and let T be t(x).
Let X and Y denote the set of all children nodes of x
and y respectively.
If y is a frontier node then
If every node in X is not a timestamp node then
If v~ (z) and v~ (y) are different then
add <T t="T — {i}">v™ (x)</T>
and <T t="¢">v" (y)</T> as a subtrees of z.
Else
If there exists a node z’ in X such that
v~ (¢') and v~ (y) are the same then
add i to t(z').
Else add <T t="¢">v(y)</T> as a subtree of z.
Else
Let XY ={(«',y') | 2’ € X,y €Y,l(z') and I(y')
are the same}.
Let X'={zeX|(VWyeY) (z,y) € XY}
Let YV ={yeY | (Vr € X) (z,y) ¢ XY}
For every pair (z',y') € XY
(a) Nested_Merge(z',y',T)
For every 2’ € X'
(b) If t(z') does not exist then let t(z') be T — {i}.
For every y' € Y’
(c) Let t(y") = {7} and place v(y') as a child node
of x.

The algorithm first determines the current set of times-

tamps. It is ¢ added to t(z) if t(x) exists. Other-
wise, timestamps are inherited from its parent. Ob-
serve that t(ra) always exists. It is a property of the
algorithm that I(z) and I(y) are the same whenever
Nested_Merge(z,y,T) is invoked. The algorithm then
proceeds by checking if y is a frontier node.

Frontier nodes are handled specially because there are
no keyed nodes beyond frontier nodes. Thus the re-
cursive merging of identical nodes no longer applies for
the descendents of frontier nodes. The children nodes
of any frontier node have the property that either they
are all timestamp nodes or none of them is a timestamp
node. In Figure 2, sal of Joe is an example of a fron-
tier node whose children are all timestamp nodes, tel of
Joe is a frontier node none of whose children are times-
tamp nodes. The transition from having no timestamp
children nodes to all timestamp children nodes occurs
when a merged version is such that contents of the fron-
tier nodes to be merged differs from that in the archive.
In Figure 5, when version 3 is merged, the value of sal of
Joe differs from that in the archive. Hence timestamps
are used to enclose the salary values at the respective
times in the new archive.

If y is not a frontier node, we partition nodes in X and
Y into three sets: XY contains pairs of nodes from X
and Y respectively that corresponds to one another, i.e.
with the same label and key value. Observe that by the
property of keys, for every node in X, there can be at
most one node in Y with the same label and key value.
X' (resp. Y') consists of nodes in X (resp. Y) where
there does not exist any node in Y (resp. X) that cor-
responds to one another. Nested merge is recursively
called on pairs of nodes in XY, inheriting the current
timestamp 7. To ensure that nodes of X' no longer ex-
ist at time 4, timestamp T excluding 7 is annotated on
nodes of X' if they do not already contain timestamps
that terminate earlier than . Subtrees rooted at nodes
of Y’ are attached as a subtrees of z and they are anno-
tated with a timestamp ¢ since they only begin to exist
at time 3.

Analysis. We analyze the running time of Nested_Merge
to show that it is O(IN log N) where N = max(Na, Np).
Here, N4 and Np are the number of nodes in the archive
(A) and version (D) respectively. We assume the set of
frontier paths are kept in a hash table. This will allow
us to determine if a given path (or node) is a frontier
path in constant time. Let d4 and dp be the maximum
degree of A and D respectively. Hence X and Y can be
determined in d4 and dp time. To compare if two XML
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Figure 5: Merging version 3 into the archive containing versions 1 and 2

values are the same, we compare their fingerprints (or
signatures). We assume that the fingerprints of these
values are taken during the Annotate Key phase. The
details are described in [2]. Since fingerprints are small,
we will assume for convenience that the comparison of
two fingerprint values take constant time. Hence the
statements, condition on y being a frontier node, exe-
cutes in O(da + dp) time.

In case y is not a frontier node, the algorithm proceeds
to determine XY, X’ and Y’ and appropriate actions,
(a), (b) and (c), are taken for nodes in each set. Our
implementation assumes that X and Y are sorted in as-
cending order according to their key values and a merge-
sort is done on the sorted nodes: Start with the first
node of each sorted sequence X and Y. Call them z’
and y'. (1) If I(z') and I(y') are the same then perform
action (a). (2) If I(z') < I(y') then perform the action
(b) on z’ and let =’ be the next node in the sorted se-
quence X. (3) Otherwise, perform action (c) on ' and
let ' be the next node in the sorted sequence Y. We re-
peat this procedure until we run out of nodes on either
sequence. If X (or Y) is empty first, we perform action
(c) (or (b)) on the rest of the nodes in ¥ (or X). In
the worst case, every node in A and D is sorted at some
point. Hence Nested_Merge takes O(NN log N) time.
Further Compaction. To obtain a further compact
archive representation, one can apply diff-based tech-
niques on XML values beneath frontier nodes. Within
the frontier node, we represent the contents that remain
the same across versions only once and mark the parts
that differ by timestamps. This is much like the ap-
proach that SCCS [21] adopts. In this way, instead of
representing XML values of these nodes under the re-
spective timestamps, we represent only their difference.
The advantage of this technique arises when XML val-
ues differ only slightly across versions.

4. EXPERIMENTAL RESULTS

The main finding of our experiments is that our archive
requires only slightly more space than the diff-based ap-
proach on real scientific data. Moreover, our results also
show that our compressed archive is better than any
other compressed repository that keeps all versions in
terms of space efficiency.

Data. We tested our archiver on three datasets:
OMIM [14], SWISS-PROT [1], and XMark [22]. OMIM
and SWISS-PROT are real scientific data as described
in Section 1. XMark is a benchmark database con-
taining synthetic auction data. We wrote a change
simulator for XMark and artificially generated versions
of data with various change rates. In the experimen-
tal result we show in Figure 7, the versions used in
the experiment are generated from the previous version
by deleting 10% of the elements in the data, insert-
ing the same number of new elements, and modifying
text data for 10% of the elements in the data. As a
remark, the deletion/insertion/modification ratios be-
tween two versions of OMIM and SWISS-PROT are
roughly 0.02%/0.2%/0.03% and 14%/26%/1.2% respec-
tively. Various other statistics of these data can be
found in Table 1.

Experiments. The main purpose of our experiments
is to answer the following question: How does the stor-
age space performance of our technique compare with
diff-based techniques? There are many variants of diff-
based approaches, but we identified two likely compet-
itive candidates: (1) incremental diff approach which
stores the first version and diffs of every successive pairs
of versions in a repository, and (2) cumulative diff ap-
proach which stores the first version and diffs of every
version from the first version.

Cumulative diffs is obviously worse than incremental
diffs in storage efficiency. However it has the advan-
tage of being fast in retrieving any version. Hence if
the storage space required by cumulative diffs is not
far from that required by incremental diffs, cumulative
diffs would be a tougher competitor for us. Our exper-
iments, however, showed that cumulative diffs quickly
suffers from the large storage space when the number
of versions gets larger. Henceforth, we concentrate on
comparisons between our archive and incremental diff
approach. The experimental results with cumulative
diffs are shown in [2].

In addition to the choice of incremental diffs or cumu-
lative diffs, we also have a choice of tree diffs or line
diffs. Tree diffs have been extensively studied [10, 11,
19, 20, 6] and we used XML-Diff [7], which is imple-
mented for XML and is downloadable from the Web.
However, when compared with line diff, XML-Diff in-
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Figure 6: Storage performance on OMIM and SWISS-PROT data.

and compress it with XMill. Both gzip and XMill were
run with “-9” option to give the best possible compres-
sion.

In all the graphs, line version shows the size of each
version, and line archive shows the size of our archives
storing up to each version. Line Vj+incremental diffs
shows the size of incremental diff repositories, i.e. the

curred a significantly higher space overhead (and it was
also not robust: we could only run it on some of our
data). Since our XML data is formatted in such a way
that each element is represented by one or more consec-
utive lines separate from other elements, line diff gives
a compact representation for small changes. For this
reason, we chose line diff for the comparison. In all our

experiments, we used the standard unix diff command
with “-d” option to compute the smallest edit scripts.
Hence, the sizes of our diff repositories are always the
smallest possible.

‘We also examined how our approach and the diff-based
approach perform in combination with compression tech-
niques. We compress the diff-based repositories with
gzip (a standard file compression tool) and we com-
press our archives with XMill (an XML compression
tool) [12]. We also experimented with compressing cu-
mulative diffs with gzip since compressed cumulative
diffs may be small. As another possible competitor, we
also put all the versions side by side into one XML tree

total size of the first version and all the incremental
diffs. Line xmill(Vi+...4+V;) refers to the size of the con-
catenation of all the versions with XMill applied. Line
gzip(Vi+incremental diffs) and line gzip(Vi+cumulative
diffs) refers to the size of incremental diff repository
and cumulative diff repository with gzip applied, respec-
tively. Finally, line xmill(archive) shows the size of our
archives with XMill applied.

4.1 Comparison with Diff

The graphs in Figure 6 show the results of the experi-
ments with OMIM and SWISS-PROT. In those graphs,
we see that the incremental diff approach marginally



outperforms our approach for most cases. For OMIM,
the archive size is never 1% more than the size of incre-
mental diffs, and for SWISS-PROT, the archive size is
never 8% more than the size of incremental diffs.
Observe that the data stored in our approach and the
diff approach are the same (although they are orga-
nized in different ways, i.e. grouped by elements v.s.
grouped by time). The small difference between the
storage space in the two approaches mainly comes from
the difference between the size of timestamps in our
archives and the size of “markers” in diff scripts. If we
have a huge number of changes of very small data, such
as a text data of length 1, the ratio of that difference to
the size of the archive can be considerably large. Such
an extreme situation, however, rarely occurs in the ex-
perimental data we used.

The graph in Figure 7 shows the results of the experi-

ments with XMark. In this case, our approach marginally

outperforms the diff approach. The main reason for this
is that our change simulator modifies text data to ran-
domly generated text, and text data sometimes happen
to be modified to their old values. While incremen-
tal diff approach is forced to store those values multi-
ple times in different deltas, our approach stores the
value only once but timestamps are augmented to in-
clude multiple intervals. Clearly, the former incurs a
higher overhead than the latter in most cases.

The scenario just described shows that, in the extreme
case where the same data is repeatedly deleted and in-
serted, our approach is likely to outperform incremen-
tal diff approach by a big margin. On the other ex-
treme, there may be insertions and deletions of highly
similar data (though semantically different because they
have different key values) over the versions. In this case
diffs usually have a compact representation (by storing
only the difference between them) while our approach
is forced to store the highly similar elements separately.
Both such extreme cases, however, rarely happens in
scientific data.

4.2 Interaction with Compression

We have seen that incremental diff technique may out-
perform our technique in terms of storage space. How-
ever, when compression is applied to both our archives
and incremental diff repositories, our archives consis-
tently uses less storage space in all our experiments.
For both OMIM and SWISS-PROT (in Figure 6), we
see that XMill applied on our archive (xmill(archive)
line) outperforms any other approach even during the
times when the incremental diff repository is clearly
smaller than our archive without compressions. For in-
stance, in Figure 6(b), as our archive starts to perform
worse than the incremental diff repository after the ver-
sion 17, our compressed archive continues to outper-
form the compressed diff repository by a growing mar-
gin. By the time version 20 of SWISS-PROT is added,
the storage space used by our archive is clearly more
than incremental-diff. However, gzip(incremental-diff)
uses clearly more storage space than xmill(archive) by
about the same magnitude.

This reversal of storage space efficiency occurs because

Size (bytes) x 10°

75.00
,
70.00 ”
65.00 ,l
60.00 ,’,:;[J/

55.00 .

7
4l'
50.00 ;

&8
45.00 &
&
Al N
40.00 & 48
4 t L Xy
SNSRI .
AR e
35.00 Es %
) ~ //\
K E KPS
30.00 S S8
) 8 R
*/x& 7
25.00 - -

14
/ /'/VQQ ! ".f
Vs 7
20.00 . e ~ =
/ 4 //O/ ° -
15.00 z = R S

= version £’ PAAe o
O-—s-e--&—)-e‘e-e—-o-a)?‘g"e—j
10.00 e .(\\(a(c‘{\JP\
- ://:13‘/"’.5 i
5.00 =
0.00
0.00 5.00 10.00 15.00 20.(

Number of Versions

Figure 7: Storage performance on XMark data
under 10% insertion + 10% deletion + 10% mod-
ification.

our archive representation groups data according to el-
ements in XML format, and XMill can exploit this spe-
cific structure to obtain a better compression ratio than
general compression tools like gzip. XMill groups text
data according to the names of the elements in which
they occur and compresses each group separately. Since
text data that belong to elements of the same name
tend to be fairly similar, high compression ratios can
usually be achieved. More surprising is the fact that
this reversal of storage space performance occurs even
when there are many insertions and deletions of similar
but semantically different elements (the extreme case
described earlier). Even when the size of incremental
diffs is far smaller than the size of our archive, our com-
pressed archive is still smaller than compressed incre-
mental diffs. The results of these experiments are shown
in [2].

Our graphs also show that a simple application of XMill
to the concatenation of all the versions does not work as
well as the our archive compressed with XMill (see lines
xmill(V1 + ... + V;) and xmill(archive)). Note that the
stepping in line xmill(V; + ... + V;) in Figure 6(a) is due



to the fact that XMill with “dictionary compression”
allocates new space whenever the dictionary at hand
becomes full. Finally, the combination of gzip and cu-
mulative diffs achieves rather high compression ratio.
However, it still does not perform as well as the XMill
applied to our archive.

As a remark, in Figure 6(b), we reached the system
file size limit of 23! when trying to add version 19 to
Vi+cumulative-diffs repository before applying gzip. The
limit is also reached when trying to add version 16 to
the Vi + ... + V15 repository before XMill can be applied
and hence the discontinuity in lines gzip(V;+cumulative-
diffs) and xmill(V1 + ... + V;) in this graph.

5. EFFICIENT RETRIEVALS

So far, we have seen that a new version can be efficiently
merged into an existing archive. Our experiments also
show that the space overhead of our archive is compara-
ble to traditional incremental diff approach for scientific
data. Moreover, our compressed archive is always better
than compressed diff repository in terms of space effi-
ciency. We now show that because the structure of our
archive is conceptually meaningful, it is easy to retrieve
a version and the temporal history of an element effi-
ciently from the archive by building simple index struc-
tures on top of the archive. A version can be retrieved
in time roughly proportional to the size of the version
and the temporal history of an element can be retrieved
in time roughly proportional to the size of its key.

5.1 RetrievingaVersion

The structure of the archive is such that a simple scan
through the archive can retrieve any version. Whenever
a timestamp tag is encountered, we output the contents
of the timestamp element only if the required version
number is in the range of the timestamps. However
this takes time proportional to the size of the archive.
To retrieve a version using incremental diff-based tech-
nique, this may require one to “roll back/forward” sev-
eral times depending on how far back/forward the ver-
sion is. We describe here a simple scheme that al-
lows a version to be retrieved in time roughly propor-
tional to the size of the version, regardless of how far
back/forward the version may be. We achieve this by
building simple auxiliary timestamp binary trees on top
of the archive.

Timestamp Trees. The purpose of a timestamp tree
is to direct the search for the relevant nodes of a version
in the archive. We will assume a timestamp tree for
each non-timestamp node (a node which is not repre-
senting the timestamp element) in the archive. Given a
node z in the archive with & children, the corresponding
timestamp tree is a binary tree with k leaves, one for
each child of z. Every leaf of the tree has two kinds
of information: the timestamps and the offset to the
corresponding child node in the archive. Each internal
node of the tree consists of the union of timestamps of
its children nodes. We will describe how to construct
this binary tree later.

Retrieve. We wish to retrieve a version ¢ from the
archive in time roughly proportional to the size of the

version. Consider a node z in the archive and suppose
it has k children of which only a belong to version 3.
The naive approach checks for each node if it is rele-
vant to version ¢, i.e, has timestamp 7. To look for the
relevant children nodes, we first look for the timestamp
tree corresponding to node x through the offset in .
Then we search down the the timestamp binary tree by
starting at the root r of the binary tree and check if
i € t(r) (where t(z) denotes the timestamps of node z).
If i € t(r), we stop. This means that neither of the two
children nodes of r is relevant for version 7. If yes, we
recurse on the two child nodes to continue the search.
‘We repeat this search down the tree. Assuming that we
have a complete binary tree and k£ and « are powers of
2, at most a nodes will be searched in each level after
depth log a. Once we reach the leaf nodes, we will know
the relevant « nodes in the archive through the offset
values stored at the leaves in the binary tree. We also
keep track of the number of nodes we have searched in
the binary tree so far and stop at the point when we
have searched a total of k£ nodes. If the threshold of & is
reached before reaching the leaf nodes, we simply search
all k leaf nodes. Observe that if ¢ € ¢(r) then o > 1.
With this strategy, we will either probe 2a—1+alog(k/a)
nodes or 2k nodes of the binary tree. We search 2a —
1+ alog(k/a) nodes when a < k/8 and 2k nodes when
a > k/8. In the former case, we are at worst factor of
log k away from the optimal number of probes while in
the latter case, we are a constant factor away from the
optimal. In largely accretive data where data changes
infrequently, it is usually the case that a > k/8 when a
version is retrieved. In the calculations so far, we have
ignored the time to test if 7 is in the set of time in-
tervals of each node. Let m be the maximum number
of time intervals among the k£ nodes. The root node
of the binary tree can have at worst mk number of
time intervals. Hence the membership test will take
O(max(log m,log k)) time at each node.

Constructing Timestamp Trees. Given an archive
in XML, one can construct a timestamp tree for each
non-timestamp node with a single scan through the archive.
The idea is to first collect the k children nodes of a node
x along with their respective timestamps and offsets into
the archive file. We build on these k leaf nodes into a
binary tree by pairing nodes repeatedly in a bottom-up
manner and taking the union of timestamps of the chil-
dren nodes for each internal node. Finally we append
the binary tree in another file and write the offset to
this binary tree in node x of the archive. Internal nodes
of the binary tree written to file will contain offsets to
their child nodes in order for one to skip to the irrelevant
nodes of the binary tree during the search.

The timestamp trees are created each time a new ver-
sion arrives and after nested merge is applied. The time
needed for creating this data structure is easily offset by
the efficiency of answering retrieval queries. We have
the following correctness property for our algorithms in
the sense that we always retrieve what we archived,
assuming that the order among keyed nodes does not
matter. Let Retrieve(A,i) be the function that retrieves
version 7 from archive A.



THEOREM b.1. If a document D is merged into an
archive A as version i then Retrieve(A,i) returns D.

5.2 Retrieving the Temporal History of an
Element

Given the key of an element, one would like to retrieve
the temporal history of this element, i.e, the times at
which this element exists. This would allow us to answer
queries such as when an element first/last exists and
how it has evolved through history. For example, the
history of employee Joe in the company database, given
by the path /db/emp[id=1], is 2,3 and 5.

We first observe that to retrieve the temporal history of
an element with incremental diff approach would prob-
ably require significant reasoning and tracing through
all the deltas. In our case, a simple scan through the
archive can already retrieve the history of any element
although this can be inefficient. We sketch a naive
scheme that would allow one to answer this query in
time O(llogd) where [ is the length of the key and d
is the maximum degree of the archive. The idea is to
maintain for each keyed node z in the archive, a sorted
list of children keyed nodes as the auxillary structure.
Each node in the sorted list contains its key, an offset to
the respective node in the archive and an offset to the
timestamp node which it inherits the timestamp from.
A binary search can be performed on the sorted list to
find the element with the desired key. We assume that
these information are kept in a fixed size record. To
retrieve the correct child node of x with the desired key,
we first find the offset to this sorted list of children nodes
from z. Perform a binary search to locate the desired
child node z’ in this list. If not found, the required el-
ement does not exist in the archive. Otherwise, locate
the corresponding node in the archive using the offset in
the record containing z’. We repeat this procedure for
every key in the path until we find desired element for
the given path. If a node has a large number of children
nodes, one can consider building more sophisticated in-
dex structures for these children nodes such as a B+
tree.

One can construct a sorted list of children keyed nodes
for each keyed node with a single scan through the
archive. The idea is to first collect the set of keyed
children nodes of each keyed node x. We keep track for
each node, the offset in the archive and the offset of the
timestamp node which it inherits from. Before we exit a
node z, we sort the list and keep the offset of this sorted
list in node z.

6. RELATED WORK

There has been considerable research on version man-
agement systems and we highlight here the recent ones.

The approach taken by Xyleme system [13] is diff-based [6].

They store the latest version together with all forward
completed deltas — changes between successive versions
which can also allow one to get to an earlier version
by inverting deltas on the latest version. Another
approach taken by Chien et. al. [18] is a reference-
based versioning scheme. The first version is always
fully stored. As subsequent versions arrive in the form

of updates, only newly inserted objects are stored. Ob-
jects that remain unchanged are stored as references to
the corresponding object in the previous version. It is
argued that this approach provides better support for
(temporal) queries since it preserves the logical struc-
ture of every version as opposed to diff. However, their
approach assumes that the edits are known, i.e, the el-
ements that has been modified, deleted or inserted are
known. Our technique does not assume the existence of
edit scripts, preserves the logical structure of every ver-
sion and still makes it easy to discover the evolutionary
history of any element.

Diff-based approaches for tree-like structures have been
substantially studied in [10, 11, 19, 20, 6]. The gen-
eral problem of finding the minimum cost edit distance
between two ordered trees is studied by Zhang et. al.
in [10, 11]. In [19], Chawathe et. al. made further re-
strictions to obtain a faster algorithm for the minimum
cost edit distance. A heuristic change detection algo-
rithm for unordered trees is also proposed in [20] with
a richer set of edit operations. Another diff technique
is proposed in [6] which uses signatures to find match-
ings and another top down phase to compute further
matchings heuristically.

Software configuration management systems such as CVS [4]

use diff-based techniques which stores the last version
together with backward deltas based on line-diffs. Our
archiving system is more like source code control system
(SCCS) [21] which uses timestamps to mark when lines
of text exists at various versions. However, the differ-
ence between SCCS and our archiving technique is that
SCCS uses line-based diff and does not use keys. There-
fore, if the same line is repeatedly inserted and deleted
over the versions, a series of identical lines marked as
inserted or deleted will be stored in the SCCS reposi-
tory. Using keys in our archiving technique, our archive
will only contain the line once with timestamps to mark
when this line exists. Nested Merge bears resemblance
to Merge Template idea in [23] which merges two XML
documents according to a specified template. The tem-
plate specifies which elements can be merged together,
inserted or replaced.

Our work is largely inspired by the work of Driscoll
et. al. [9] where they studied methods for making data
structures partially persistent —updates and accesses are
allowed on the latest version but only accesses are al-
lowed on past versions. However, the set of edits is
known and they do not exploit key information.

7. CONCLUSION

‘We have described an archiving technique for XML data
with key structure. Our approach is the first archiv-
ing technique for XML data that is not diff-based. We
have shown that one can efficiently add a version into
an existing archive. Our experiments also show that
our archiving technique is comparable to diff-based ap-
proaches in terms of space efficiency for scientific data.
For example, SWISS-PROT archive is never more than
1.08 times the size of incremental-diff repository and
OMIM archive is never more than 1.01 times the size



of incremental-diff repository. Our archiving technique
also provides one with meaningful change descriptions
— we are able to describe changes around “objects”
or elements by identifying elements through keys. Diff
techniques are based on minimizing edit costs which
may give meaningless deltas as seen by the Person(Name,
DateOfBirth, Address, Zip) example earlier. Moreover,
since the structure of our archive is conceptually mean-
ingful, it is easy to support various temporal queries on
the archive, by building index structures on top of the
archive. In addition, since our archive is yet another
XML document, this allows one to directly leverage ex-
isting XML tools. Existing XML query languages such
as XQuery [28] can be used to query our archive. It
is also mentioned in [18] that the ideal solution is to
represent the history of a versioned document as yet
another XML document for this allows one to exploit
web-browsers, style sheets, query processors and other
tools that already support XML. Our experiments also
showed that our archive works well in tandem with com-
pression; our compressed archive is always more space
efficient than compressed diff-based repositories in all
data sets that we have used.

One issue that is not discussed in this paper is how one
can extend the archiver to handle order among XML
elements. One approach is to use tree alignment, which
is a generalization of string alignment, instead of the
nested merge. For now, we have implemented a proto-
type based on this idea, but experiments and the theo-
retical analysis on its efficiency is future work. Please re-
fer to [2] for this issue. How one can extend our archiver
to handle other definitions of keys found in [15] is also
an interesting future work.
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