
Traversing Itemset Lattices with Statistical Metric Pruning

Shinichi Morishita
Graduate School of Frontier Sciences

University of Tokyo
7-3-1 Hongo, Bunkyo Ward

Tokyo 113-0033, Japan

moris@k.u-tokyo.ac.jp

Jun Sese
Graduate School of Frontier Sciences

University of Tokyo
7-3-1 Hongo, Bunkyo Ward

Tokyo 113-0033, Japan

sesejun@gi.k.u-tokyo.ac.jp

ABSTRACT
We study how to e�ciently compute signi�cant association
rules according to common statistical measures such as a
chi-squared value or correlation coe�cient. For this pur-
pose, one might consider to use of the Apriori algorithm,
but the algorithm needs major conversion, because none of
these statistical metrics are anti-monotone, and the use of
higher support for reducing the search space cannot guar-
antee solutions in its the search space. We here present a
method of estimating a tight upper bound on the statistical
metric associated with any superset of an itemset, as well as
the novel use of the resulting information of upper bounds to
prune unproductive supersets while traversing itemset lat-
tices. Experimental tests demonstrate the e�ciency of this
method.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining, Statistical
Databases

1. MOTIVATING EXAMPLE
Association rules [2] have been widely studied in recent years.
We call a set of items an itemset. Let D be a set of transac-
tions wherein each transaction is an itemset. For instance,
in Table 1 (A), each row except the �rst one represents an
itemset, and each column denotes an item. \1" indicates
the presence of the item in the row, while \0" indicates
the item's absence. For example, the fourth row expresses
fa,c,eg.

Let I be an itemset, and let Pr(I) denote the ratio of the
number of transactions that include I to the number of all
transactions in D. We call Pr(I) the support of I. In our
running example, Pr(fa; bg) = 25% and Pr(fa; b; cg) =
12:5%. An association rule has the form I1 ) I2, where
I1 and I2 are disjoint itemsets. The support of I1 ) I2
is de�ned as Pr(I1 [ I2), while the con�dence is Pr(I1 [
I2)=Pr(I1). For instance, the support and the con�dence of

fa; bg ) fcg are 12.5% and 50%, respectively.

Agrawal et al. [2] addressed the problem of enumerating
all association rules that have support and con�dence val-
ues no smaller than the user-speci�ed minimum thresholds.
They developed important techniques and designed the well-
known Apriori algorithm [3].

Apriori and its variants
An itemset I is large if its support Pr(I) is no less than the
user-speci�ed minimum support. The strategy of Apriori
is two-phased. First it enumerates all large itemsets, and
then it derives association rules. For instance, from a large
itemset, say fa; b; cg, Apriori tries to generate fa; bg ) fcg.
To speed up the expensive step of listing all large itemsets,
Agrawal and Srikant developed a method of searching the
lattice of itemsets with respect to itemset-inclusion. The
strategy starts from the empty set and scans itemsets from
smaller to larger in an incremental manner.

The support of an itemset is anti-monotone with respect to
set-inclusion of itemsets; that is, for any I � J , Pr(I) �
Pr(J). Thus, whenever an itemset is not large with respect
to a minimum support threshold, neither is any of its super-
sets. The Apriori algorithm uses this heuristics to e�ectively
prune away a substantial number of unproductive itemsets.
Ng et al. [15; 22] proposed a general class which they termed
constraint association rules and to which the same prun-
ing heuristics could be applied. Tsur et al. [25] used the
anti-monotonicity to derive Datalog rules e�ciently. Sev-
eral other improvements of Apriori have also been reported
[4; 7; 23].

Correlation
However, one drawback of the support-con�dence frame-
work is its weakness at expressing the notion of correlation
[1; 6; 16]. Table 1 (B) shows some association rules derived
from the database in Table 1 (A). Let us consider which
rules are valuable. Statistically speaking, the �rst and the
third rules do not make sense, because in each rule the as-
sumptive itemset, say I, and the conclusive itemset, say C,
are independent; that is, Pr(I [ C) = Pr(I)� Pr(C). On
the other hand, in the second rule, the assumption and the
conclusion are highly and positively correlated.

This example suggests measuring the usefulness of an asso-
ciation rule by the signi�cance of correlation between the
assumption and the conclusion. For instance, the analysis



a b c d e

1 1 1 1 1

1 1 0 1 1

1 0 1 0 1

1 0 0 0 1

0 1 1 0 1

0 1 0 0 1

0 0 1 1 1

0 0 0 1 1

I ) C support con�dence correlated ?

fxg ) fyg 25% 50% No
(x; y 2 fa; b; c; dg; x 6= y)

fa; bg ) fdg 25% 100% Yes

fag ) feg 50% 100% No

(A) Examples of Transactions (B) Examples of Association Rules

Table 1: Transactions and Association Rules

of scienti�c data calls for a method of discovering correla-
tion among various phenomena. For this purpose, the chi-
squared value is typically used because of its solid ground-
ing in statistics. Other related statistical measures, such
as correlation coe�cient, entropy information gain, gini in-
dex and interclass variance have also been frequently used.
There have been some arguments about the choice of sta-
tistical measures in statistics and arti�cial intelligence, but
our proposal is independent of the choice, because we will
present a general method that can handle all those standard
statistical metrics in a uniform manner. But, for the mo-
ment, for the sake of simplicity, we continue this discussion
by using the chi-squared value, and then we will present how
to generalize the method.

2. ENUMERATION
Use of the chi-squared value instead of support and con�-
dence motivates us to consider the following enumeration
problem:

� Enumeration Problem: Enumerate all signi�cant
association rules that have chi-squared values no smaller
than the user-speci�ed minimum cuto� value, say at
the 95% signi�cance level.

To this problem, the application of the Apriori algorithm has
been investigated [1; 6]. Brin et al. [6] proposed a method
of enumerating large itemsets �rst and then selecting corre-
lated itemsets. However, use of the support threshold may
not always prune unproductive itemsets e�ectively. For in-
stance, from the rules in Table 1 (B) we would like to select
only the second rule, whose support is 25%, but the thresh-
old of 25% does not discard itemsets of the form fx; yg where
x; y 2 fa; b; c; dg, which are not correlated and therefore are
irrelevant. In general, use of the lower threshold would gen-
erate many irrelevant itemsets, while the higher threshold
may lose relevant itemsets.

To avoid the use of a support threshold, Aggarwal and Yu [1]
proposed the generation of a strongly collective itemset that
requires correlation among items of any subset. If an item-
set is not strongly collective, neither is any of its supersets,
and therefore Apriori's pruning strategy can be successfully
used for enumerating strongly collective itemsets [22]. How-
ever, this constraint might be too restrictive to output some
desired rules. In our running example, a and b are not cor-
related at all, and hence fa; b; dg is not strongly collective.
Thus we cannot derive \fa; bg ) fdg."

These previous approaches present some di�culties of us-
ing the Apriori's strategy for the enumeration problem. We
investigate another approach to the problem. Our idea is
that we �rst select the conclusive itemset (say fdg), proceed
to search the assumptive itemset (say fa; bg) that is sig-
ni�cantly correlated with fdg, and derive \fa; bg ) fdg."
In real applications, we are often interested in a particular
itemset C and want to �nd itemsets that are highly corre-
lated with C. Thus restricting the enumeration problem to
the following form makes sense.

� Item-wise Enumeration Problem: For a �xed con-
clusion C, enumerate all signi�cant association rules of
the form I ) C that have chi-squared values no less
than the user-speci�ed minimum cuto� value, say � .

Let chi(I) denote the chi-squared value of rule I ) C.
Then, our goal is to develop an e�cient way of enumer-
ating fI j chi(I) � �g. One might wonder if the pruning
strategy of Apriori is e�ective for this enumeration prob-
lem. Unfortunately, however, chi(I) is not anti-monotone
wrt set-inclusion, which is the major obstacle to the appli-
cation of Apriori's pruning method.

We solve this problem as follows: We scan the lattice of
itemsets beginning with smaller itemsets and continuing to
larger ones. Suppose that we investigate an itemset I during
the search. We develop a method of computing an upper
bound, denoted by u(I), on fchi(J) j I � Jg by using the
convexity of the chi-squared function. If u(I) < � , for any
superset J of I, chi(J) � u(I) < � , and hence we can safely
prune fJ j I � Jg at once.

There are more opportunities to prune the sub-lattice fJ j

I � Jg if the value of u(I) is lower and closer to maxfchi(J) j
I � Jg. In general, however, it is di�cult to calculate the
maximum value unless we investigate all the supersets of I.
Thus, it is a non-trivial question whether or not we can es-
timate a tight upper bound on fchi(J) j I � Jg. We will
present our algorithm, and empirically evaluate its e�ective-
ness through a substantial number of experiments.

3. OPTIMIZATION
In many practical applications, we often face a situation in
which a large number of association rules are generated. To
resolve this problem, one may sort association rules accord-
ing to their signi�cance and screen out insigni�cant rules.
Ideally, however, instead of computing too many rules, we



want to directly compute the most signi�cant n rules. Fur-
thermore, focusing on the most signi�cant n rules might help
us to abandon unimportant itemsets earlier in computation,
and thereby accelerate the overall performance. Formally,
the problem is de�ned as follows:

� Optimization Problem: For a �xed conclusion C,
compute the optimal association rule of the form I )
C that maximizes the chi-squared value, or list the
most signi�cant n solutions.

If we treat the maximum number of items in an itemset as a
variable, the problem is NP-hard (see Appendix), but in real
applications, the maximum number is usually bounded by a
constant, and hence the problem is tractable. To solve this
optimization problem e�ciently, we extend the idea for solv-
ing the item-wise enumeration problem. We also associate
with an itemset I an upper bound u(I) on fchi(J) j I � Jg,
but the di�erence is that during the scan of the itemset lat-
tice, we always maintain the temporarily maximum (or n-th
largest) chi-squared value among all the chi-squared values
calculated so far, and set it to the cuto� value � . If u(I) < � ,
no superset of I gives a chi-squared value greater than or
equal to � , and hence we can safely prune fJ j I � Jg.

The idea of pruning with the information of upper bounds
is a standard technique in combinatorial optimization, but
the novelty of our proposal is to utilize the idea during the
traverse of the lattice of itemsets. There have been pro-
posed some previous approaches to traverse a search tree
of itemsets in a best-�rst manner [5; 20]. Bayardo consid-
ered various metrics including statistical ones and presented
a general-purpose method of approaching the optimal solu-
tion by searching a support/con�dence border [5]. But if
we focus on statistical metrics such as a chi-squared value,
we can further reduce the search space, and we only need
to scan the convex hull of a support/con�dence border. We
will exploit this technique in this paper. The mining of op-
timized ranges or regions for numerical attributes has also
been intensively studied [8; 10; 11; 12], but not with refer-
ence to the mining of optimal association rules over itemsets.

4. MAIN RESULTS
4.1 Correlation
Definition 4.1. Let I ) C be an association rule, D be

a set of transactions, and n be the number of transactions

in D. In the following contingency table, rows I and �I show

the number of transactions that do and do not contain I,

respectively. Columns C and �C correspond to the conclusion

C. Each value in the last column (row, resp.) shows the

summation of the two values in the second or third columns

(rows) and in the same row (column).

C �C
P

row

I OIC OI �C OI

�I O�IC O�I �C O�IP
column OC O �C n

OI �C , for instance, represents the number of transactions that

contain I but do not include C. OI , for example, shows the

number of transactions that contain I, which is equal to the

sum of the values in the row, OIC + OI �C . For each pair

(i; j) 2 fI; �Ig � fC; �Cg, we calculate expectation under the

assumption of independence:

Eij = n � (Oi=n)� (Oj=n):

The chi-squared value is the normalized deviation of obser-

vation from expectation; namely,

X

i2fI;�Ig;j2fC; �Cg

(Oij �Eij)
2

Eij

:

If we �x the conclusion C, OC and O �C can be regarded as

constants, and let m denote OC . Also, let x and y denote OI

and OIC respectively. The contingency table then becomes:

C �C
P

row

I OIC = y OI �C OI = x
�I O�IC O�I �C O�I = n� xP

column OC = m O �C = n�m n

Since n and m are independent of the choice of the assump-

tion I, the values of x and y uniquely determine the chi-

squared value. Thus we will refer to the chi-squared value as

chi(x; y); namely,

chi(x; y) =
X

i2fI;�Ig;j2fC; �Cg

(Oij �Eij)
2

Eij

:

In the above de�nition, each Oij must be non-negative, and

hence

0 � y � x; and 0 � m� y � n� x:

Also, each Eij must be greater than zero, and hence Oi must

be greater than zero for each i 2 fI; �I; C; �Cg. Thus, chi(x; y)
is de�ned for 0 < x < n and 0 < m < n. We will extend the

domain of chi(x; y) to include (0; 0) and (n;m). Since

lim
x!0

chi(x; y) = lim
x!n

chi(x; y) = 0;

we de�ne

chi(0; 0) = chi(n;m) = 0:

Incidentally, it is often helpful to explicitly state that x and

y are determined by I, and we de�ne:

x = x(I); and y = y(I):

2

Definition 4.2. A function f(x; y) is convex if for any

(x1; y1) and (x2; y2) in the domain of f , and for any 0 �
� � 1,

f(�(x1; y1) + (1� �)(x2; y2))

� �f(x1; y1) + (1� �)f(x2; y2):2

Proposition 4.1. chi(x; y) is a convex function.

lim
x!0

chi(x; y) = lim
x!n

chi(x; y) = 0:

chi(x; y) is minimum if y = m
n
x.

Proof. See Appendix.



4.2 Upper Bound
Let I be an arbitrary itemset. We now describe the method
for estimating a tight upper bound of fchi(x(J); y(J)) j J �
Ig. With each J � I we associate the point (x(J); y(J)),
which we call a stamp point, and Figure 1 illustrates the
resulting stamp points. The following theorem presents a
method of calculating an upper bound.

Theorem 4.1. For any J � I,

chi(x(J); y(J))

� maxf chi(y(I); y(I)); chi(x(I)� y(I); 0) g:

Proof. Observe the following inequalities:

0 � x(J) � x(I) 0 � y(J) � y(I)
y(J) � x(J) x(J)� y(J) � x(I)� y(I)

Any stamp point (x(J); y(J)) is mapped onto the gray paral-
lelogram in Figure 1, whose vertexes are (0; 0), (y(I); y(I)),
(x(I); y(I)), and (x(I)� y(I); 0).

We continue to use the notations given in De�nition 4.1, say
m and n. Since

y(I) � m; x(I) � n; and x(I)� y(I) � n�m;

(x(I); y(I)) and all the stamp points are mapped onto the
quadrangle (0; 0), (y(I); y(I)), (n;m), and (x(I)� y(I); 0).
It is known that any convex function is maximized at one of
the vertexes on the boundary of a convex polygon [14]. From
Proposition 4.1, both (0; 0) and (n;m) minimize chi(x; y).
Thus, (y(I); y(I)) or (x(I)�y(I);0) must maximize chi(x; y)
among all the stamp points in f(x(J); y(J)) j J � Ig, which
completes the proof.

We also here present an alternative proof. Let L denote the
line connecting (0; 0) and (n;m). From Proposition 4.1, ev-
ery stamp point on L minimizes chi(x; y). Let (x(J); y(J))
be an arbitrary stamp point. If (x(J); y(J)) exists in the up-
per side of L. Draw the line from (y(I); y(I)) to (x(J); y(J)),
and suppose that the line hits L at Q. Since Q minimizes
chi(x; y) and chi(x; y) is a convex function,

chi(x(J); y(J)) � chi(y(I); y(I)):

On the other hand, if (x(J); y(J)) is in the lower side of L,
we can similarly prove

chi(x(J); y(J)) � chi(x(I)� y(I); 0):

Definition 4.3. Let u(I) denote

maxfchi(y(I); y(I)); chi(x(I)� y(I); 0)g: 2

u(I) is tight in the sense that there could exist J � I such
that chi(x(J); y(J)) = u(I).

(n, n)

(x(I), y(I))(y(I), y(I))

(x(I) - y(I), 0)(0, 0) x

y

(n, m)

Figure 1: Stamp Points

4.3 Traversing Itemset Lattices
Item-wise Enumeration Problem
Definition 4.4. We treat the set of all itemsets as a lat-

tice by regarding the set inclusion as the partial order, the

union of itemsets as the least upper bound, and the intersec-

tion of itemsets as the greatest lower bound. The lattice is

also called an itemset lattice. 2

Definition 4.5. Let � be the user-speci�ed minimum chi-

squared value threshold. An itemset I is signi�cant if

chi(x(I); y(I)) � �:

An itemset I is promising if u(I) � � . 2

Our goal is to compute the set of signi�cant itemsets. For
this purpose, the set of promising itemsets has three useful
properties. First, any signi�cant itemset is promising, and
thereby the set of promising itemsets includes all signi�cant
itemsets. Second, if an itemset I is promising but may not be
signi�cant, it is worth searching the supersets of I, because
there could be a signi�cant superset of I. Third, if I is not
promising, there is no point of searching the supersets of I,
because any J(� I) is not signi�cant since chi(x(J); y(J)) �
u(I) < � . Thus we calculate the set of promising itemsets
to derive the set of signi�cant itemsets.

Definition 4.6. An itemset is called a k-itemset if it

contains k distinct items. Let Pk denote the set of all promis-
ing k-itemsets. 2

Since the set of all promising itemsets is P1 [ P2 [ : : : , we
construct Pk for each k = 1; 2; : : : . We now introduce a can-
didate set for Pk that is useful for computing Pk e�ciently.

Definition 4.7. We call an itemset I potentially promis-

ing if every proper subset of I (any subset smaller than I)



� is given by the user.
Q1 := fI j I is a 1-itemset.g; k := 1;
repeat begin

If k > 1, generate Qk from Pk�1;
Scan all the transactions to compute u(I) and chi(x(I); y(I)) for each I 2 Qk;
Pk := fI 2 Qk j u(I) � �g; X := Pk; k ++;

end until X = �;
Return fI 2 [kPk j chi(x(I); y(I)) � �g;

Figure 2: AprioriSMP for the Item-wise Enumeration Problem

� := 0;

Q1 := fI j I is a 1-itemset.g; k := 1;
repeat begin

If k > 1, generate Qk from Pk�1;
Scan all the transactions to compute u(I) and chi(x(I); y(I)) for each I 2 Qk;
� := max(�; maxfchi(x(I); y(I)) j I 2 Qkg);

Pk := fI 2 Qk j u(I) � �g; X := Pk; k ++;
end until X = �;
Return � with its corresponding itemset;

Figure 3: AprioriSMP for the Optimization Problem

is promising. Let Qk denote the set of potentially promising

k-itemsets. 2

Theorem 4.2. Qk � Pk.

Proof. Otherwise, let I be an itemset such that I 2 Pk
but I 62 Qk. There must exist such a proper subset J of I
that is not promising; that is, u(J) < � . Then, any superset
of J is not signi�cant, and hence none of all supersets of I
is signi�cant. This however implies that I is not promising,
which contradicts the assumption that I 2 Pk.

We can derive Qk solely from Pk�1 without scanning all the
transactions. To this end, we use the idea of the apriori-gen
function of the Apriori algorithm [3]; that is, we select two
members in Pk�1, say I1 and I2, such that I1 and I2 share
(k�2) items in common, and then check to see whether each
(k � 1)-itemset included in I1 [ I2 belongs to Pk�1, which
can be determined e�ciently by organizing Pk�1 as a hash
tree structure. We repeat this process to create Qk.

To compute Pk, we then scan all the transactions to cal-
culate u(I) and chi(x(I); y(I)) for each I 2 Qk, and set
fI 2 Qk j u(I) � �g to Pk. Figure 2 presents the overall al-
gorithm, which we call AprioriSMP (Apriori with Statistical
Metric Pruning).

Optimization Problem
To design an algorithm for the optimization problem, we
slightly modify AprioriSMP for the item-wise enumeration
problem in Figure 2. The key idea is that we use � to
store the temporarily maximum chi-squared value during
the computation instead of the user-speci�ed minimum chi-
squared value. As before, an itemset I is de�ned promising

if u(I) � � , because there is a possibility that a superset
of I may give a chi-squared value no smaller than the tem-
porarily maximum value � .

Figure 3 presents the revision of AprioriSMP in Figure 2 ac-
cording to the line outlined. We have underlined the three
newly added statements. If X is empty, there is no promis-
ing itemset whose superset may give a chi-squared value
larger than � , which means that � is guaranteed to be the
maximum value. It is then relatively easy to modify the al-
gorithm in Figure 3 so that it can list the most signi�cant
n itemsets.

4.4 Using Other Statistical Measures
There are other related statistical metrics commonly used
for evaluating the correlation between the assumption and
the conclusion of an association rule. We remark that it
is relatively easy to modify AprioriSMP such that it can
use three well-known statistical metrics: the entropy gain
(mutual information), the gini index (mean squared error),
and the correlation coe�cient.

Definition 4.8. Recall the following contingency table in
De�nition 4.1.

C �C
P

row

I OIC = y OI �C OI = x
�I O�IC O�I �C O�I = n� xP

column OC = m O �C = n�m n

Using the notations in the above table, we de�ne the various

statistical metrics.

Let ent(p) = �p ln p � (1 � p) ln(1 � p). The entropy gain

Ent(x; y) is:

Ent(x; y) = ent(
OC

n
)�

OI

n
ent(

OIC

OI

)�
O�I

n
ent(

O�IC

O�I

):

Let gini(p) = 1� p2. The Gini index Gini(x; y) is:

Gini(x; y) = gini(
OC

n
)�

OI

n
gini(

OIC

OI

)�
O�I

n
gini(

O�IC

O�I

):



Let t 2 D. Let X be an itemset, and let Xt denote a variable

such that Xt = 1 if t � X, and Xt = 0 otherwise. Let

�I = OI=n and �C = OC=n. The correlation coe�cient

�(x; y) is:

�(x; y) =

P
t2D(It � �I)(Ct � �C)

(
P

t2D(It � �I)2)1=2(
P

t2D(Ct � �C)2)1=2
:

2

Recall that in the design of the AprioriSMP algorithm, it is
essential to use the convexity of the chi-squared function. It
is known that Ent(x; y) and Gini(x; y) are convex functions
[10; 17; 19]. Thus we can obtain AprioriSMP tailored to the
entropy gain or the gini index by appropriately replacing the
chi-squared function. Incidentally, �(x; y) ranges from -1 to
1, and the absolute value of �(x; y) shows the strength of the
correlation between A and C. It is known that chi(x; y) =
n�(x; y)2 [24], and hence the optimal value of j�(x; y)j can
be immediately obtained from the optimal value of chi(x; y).

Interclass Variance
It is interesting and also useful to associate with each trans-
action a numeric value such as height, weight, or balance.
For instance, one may want to discover a signi�cant asso-
ciation between an itemset of foods taken by people in a
particular area and high blood pressure.

Definition 4.9. Let nu denote the numeric attribute of

interest, and let t[nu] denote nu's value associated with a

transaction t. 2

We are interested in �nding an itemset that is highly cor-
related with the numeric attribute nu. To measure the
strength of the correlation, we can employ the interclass

variance, which is frequently used in statistics.

Definition 4.10. Let D be the set of all transactions,

and let X be a subset of D. Let �(X) denote the averages

of nu's values in X; namely,

�(X) =

P
t2X t[nu]

jXj
:

Let DI = ft 2 D j t � Ig, and let �DI = D � DI . The

interclass variance is

jDI j(�(D)� �(DI))
2
+ j �DI j(�(D)� �( �DI))

2
:

If D is �xed, the interclass variance is uniquely determined

by jDI j and
P

t2DI
t[nu]. Let x(I) = jDI j, and let y(I) =P

t2DI
t[nu]. We will denote the above interclass variance

by var(x(I); y(I)). 2

Observe that if an itemset A is more correlated with the nu-
meric item, the interclass variance gets larger. It is known
that var(x; y) is a convex function [19]. The following the-
orem presents a way of estimating a tight upper bound for
var(x(J); y(J)) for any J � I.

Theorem 4.3. Divide ft j t � Ig into two disjoint sub-

sets by a cutpoint z 2 ft[nu] j t � Ig, and de�ne

x<z = jft j t � I; t[nu] < zgj

y<z =
X

ft[nu] j t � I; t[nu] < zg

xz� = jft j t � I; z � t[nu]gj

yz� =
X

ft[nu] j t � I; z � t[nu]g

For any J � I,

var(x(J); y(J))

� max
[

z2ft[nu]jt�Ig

fvar(x<z; y<z); var(xz�; yz�)g

Proof. This theorem can be proved according to the line
of the proof of Theorem 4.1. First it is easy to show that

[

z2ft[nu]jt�Ig

f(x<z; y<z); (xz�; yz�)g

is a convex polygon that includes all the stamp points of
the form (x(J); y(J)) for J � I. Now, var(x; y) is a con-
vex function, any convex function is maximized at one of
the vertexes of a convex polygon, and thereby the objective
inequality is proved.

Because of the above theorem, it is straightforward to mod-
ify AprioriSMP to handle the interclass variance. Comput-
ing the upper bound is not costly, since the most time-
consuming step is sorting ft[nu] j t � Ig. To be more
precise, we can compute var(x<z; y<z) and var(xz�; yz�)
for each z 2 ft[nu] j t � Ig by scanning the sorted list of
ft[nu] j t � Ig just once.

5. EXPERIMENTAL RESULTS
AprioriSMP has been implemented in C++. We evaluated
the performance of AprioriSMP for the optimization prob-
lem on a single R10000 of SGI Origin 2000 with a CPU clock
rate of 195MHz, 512MB of main memory, and running IRIX
6.5SE.

We generated a test dataset using the method introduced by
Agrawal and Srikant [3]. Following [3], we use the following
symbols:

jDj: the number of transactions
jT j: the average size of transactions
jIj: the average size of

the maximal potentially large itemsets
jLj: the number of maximal potentially large itemsets
N : the number of items

We used parameters of jT j = 20, jIj = 4, and jLj = 2000.

To create an optimal association rule intentionally, we arbi-
trarily selected one maximal potentially large itemset, say
X, and we doubled the probability that this itemset will
be picked during the generation of the test dataset. The
other itemsets are selected according to the method in [3].
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Figure 4: Execution Times of AprioriSMP for the Optimization Problem

jDj 5000 10000 20000 40000 80000

jQ1j 1000 1000 1000 1000 1000
jP1j 522 935 976 383 576

jQ2j 135981 436645 475800 73153 165600
jP2j 3 3 3 3 3

jQ3j 1 1 1 1 1
jP3j 1 1 1 1 1

N 1000 10000 20000 40000 100000

jQ1j 1000 10000 20000 40000 100000
jP1j 407 145 97 99 261

jQ2j 82621 10440 4656 4851 33930
jP2j 3 3 3 3 3

jQ3j 1 1 1 1 1
jP3j 1 1 1 1 1

(A) Case when N = 1000 (B) Case when jDj = 1000

Table 2: Dramatic E�ect of Statistical Metric Pruning for the Optimization Problem

We then selected an item c in X as the objective item, and
thereby made (X�fcg)) fcg the optimal association rule.

We have �rst observed the behavior of the execution time
when we increase the number of transactions while we have
�xed N = 1000. Figure 4 (A) shows the execution time
scales almost linearly with the number of transactions. We
have also observed the execution time for various numbers of
items N while we have �xed jDj = 1000, which is illustrated
in Figure 4 (B). The execution time also scales almost lin-
early with the number of items. Table 2 presents numbers of
potentially promising itemsets jQkj and numbers of promis-
ing itemsets jPkj that were generated during the computa-
tion. Note that jQ2j � jP2j = 3 in all cases, which shows
the dramatic e�ect of the statistical metric pruning.

Although AprioriSMP does not use the information of sup-
ports of itemsets for pruning unproductive itemsets, one
may want to know supports of itemsets generated during the
computation. For each Qk and each Pk, we kept the record
of the minimum support, minfPr(I[fcg) j I 2 Qk(or Pk)g,
and Table 3 presents those minimum supports. For instance,
in Table 3 (A), when jDj = 5000, we see:

minfPr(I [ fcg) j I 2 Q1g = 0:02%

minfPr(I [ fcg) j I 2 P1g = 0:02%

minfPr(I [ fcg) j I 2 Q2g = 0%

minfPr(I [ fcg) j I 2 P2g = 9:52%

Observe that AprioriSMP had to examine promising or po-
tentially promising itemsets with very small supports in its
earlier steps for computing the optimal itemset in the �nal
step, even if the support of the optimal itemset is relatively
high.

6. CONCLUSION
We have discussed how to e�ciently calculate signi�cant as-
sociation rules according to common statistical measures.
We have shown that the Apriori algorithm combined with
the novel technique of pruning via statistical metric presents
an e�cient solution to this problem. The major advantage
of AprioriSMP is its avoidance of the use of higher support
thresholds that has been believed to be requisite for the ap-
plication of Apriori.

We are now improving our current implementation so that
the computation time scales for millions of transactions. Ac-
tually, we store transactions in the format of a two-dimensional
table that could be often sparse. We will be able to reduce
the size of the sparse table just by representing the table in
a condensed set format.

Finding correlation between itemsets would be applicable to
various problems. We have been using this technique to the
analysis of correlation between multiple genotypes and the
objective phenotype of interest [21].



jDj 5000 10000 20000 40000 80000

Q1 0.02% 0.06% 0.1% 0.17% 0.14%
P1 0.02% 0.06% 0.1% 0.17% 0.14%

Q2 0% 0% 0% 0% 0%
P2 9.52% 9.29% 9.95% 9.77% 9.76%

Q3 9.5% 9.29% 9.95% 9.77% 9.74%
P3 9.5% 9.29% 9.95% 9.77% 9.74%

N 1000 10000 20000 40000 100000

Q1 0% 0% 0% 0% 0%
P1 0% 0% 0% 0% 0%

Q2 0% 0% 0% 0% 0%
P2 8.8% 8.0% 9.3% 9.3% 10.8%

Q3 8.8% 8.0% 9.3% 9.3% 10.8%
P3 8.8% 8.0% 9.3% 9.3% 10.8%

(A) Case when N = 1000 (B) Case when jDj = 1000

Table 3: Minimum Support
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APPENDIX
To try to make this paper self-contained, we here present
the proofs of two propositions used in this paper. Theorems
closely related with the propositions have been proved in
other publications.

A. PROOF OF PROPOSITION 4.1

chi(x; y) is a convex function.

This property is also shown in [17]. Proofs for Ent(x; y),
Gini(x; y), and var(x; y) can be found in [9; 19], [17], and
[18; 19] respectively. Technically, those proofs can be shown
in a similar way.

Recall the following contingency table and the de�nition of
chi(x; y) given in De�nition 4.1.

C �C
P

row

I OIC = y OI �C OI = x
�I O�IC O�I �C O�I = n� xP

column OC = m O �C = n�m n

chi(x; y) =
X

i2fI;�Ig;j2fC; �Cg

(Oij �Eij)
2

Eij

;

where

Eij = n � (Oi=n)� (Oj=n):

To order to prove the convexity of chi(x; y), it is su�cient to
show that for any real numbers �1 and �2, and V = �1x+�2y,

@
2
chi(x; y)=@V

2
� 0: (1)

Focus on the case when i = I, and de�ne

f(x; y) =
X

i=I;j2fC; �Cg

(Oij �Eij)
2

Eij

:

Then,

chi(x; y) = f(x; y) + f(n� x;m� y):

To prove (1), it is su�cient to show

@
2
f(x; y)=@V

2
� 0

@
2
f(n� x;m� y)=@V

2
� 0:

We will prove the former inequality. The latter can be
proved in a similar way.

f(x; y) =
(OIC �EIC)

2

EIC

+
(OI �C �EI �C)

2

EI �C

=
(y � xm

n
)2

xm
n

+
(x� y �

x(n�m)

n
)2

x(n�m)

n

=
(ny �mx)2

x
�

1

m(n�m)
(2)

De�ne

f1(x; y) =
(ny �mx)2

x
:

Then,

@
2
f(x; y)=@V

2
� 0 i� @

2
f1(x; y)=@V

2
� 0:



We will prove the latter inequality for �1 6= 0 and �2 6= 0.

@f1(x; y)

@V
=

@f1

@x

@x

@V
+

@f1

@y

@y

@V

=
m2x2 � n2y2

�1x2
+

2(ny �mx)n

�2x

= �
n2

�1
(
y

x
)
2
+

2n2

�2
(
y

x
) + constant

@2f1(x; y)

@V 2
=

2n2

x3
(
y

�1
�

x

�2
)
2

� 0

The cases when �1 = 0 or �2 = 0 can be proved similarly.

limx!0 chi(x; y) = 0

chi(x; y) = f(x; y) + f(n� x;m� y)

= (ny �mx)
2
(
1

x
+

1

n� x
)

1

m(n�m)

= (n
y

x
�m)

2
x

n

n� x

1

m(n�m)

Since 0 � y � x, y

x
� 1, and hence limx!0 chi(x; y) = 0.

limx!n chi(x; y) = 0

chi(x; y) = (n
m� y

n� x
�m)

2
(n� x)

n

x

1

m(n�m)

Since 0 � m� y � n� x, m�y
n�x

� 1, limx!n chi(x; y) = 0.

chi(x; y) is minimum if y = (m=n)x.

Since chi(x; y) = f(x; y) + f(n� x;m� y),

chi(x; y) = chi(n� x;m� y):

From the convexity of chi(x; y),

chi(x; y) =
1

2
chi(x; y) +

1

2
chi(n� x;m� y)

� chi(n=2; m=2);

and hence chi(x; y) is minimum at (n=2; m=2). From the
de�nition of f(x; y) (see (2)),

f(n=2; m=2) = 0 and f(x; (m=n)x) = 0:

Since chi(x; y) = f(x; y) + f(n� x;m� y),

chi(n=2; m=2) = chi(x; (m=n)x) = 0;

which completes the proof.

B. NP-HARDNESS OF THE OPTIMIZATION
PROBLEM

The case when the statistical measure is the entropy gain
is proved in [19], and the argument carries over to the opti-
mization problem for the chi-squared function.

Theorem B.1. It is NP-hard to compute the optimal as-

sociation rule of the form I ) C, where C is a �xed itemset.

Proof. We reduce the di�culty of the problem to the
NP-hardness of �nding the minimum cover [13]. Let (V;E)
be a hypergraph such that V denotes the set of vertexes and
E shows the set of hyperedges. e 2 E is a subset of V that
may contain more than two vertexes in it. A subset E0 of
E is called a cover if every vertex in V belongs to one of
hyperedges in E; that is,

[e2E0e = V:

A minimum cover minimizes the number of hyperedges in it
among all covers. It is known that computing a minimum
cover is NP-hard [13].

In what follows, we construct a set of transactions such that
the optimal association rule presents a minimum set cover
of (V;E). First, with each hyperedge e 2 E, we associate a
unique item, denoted by ie, that is newly created. We also
introduce an item of special named c. We will denote the
set of all items by S; that is,

S = fie j e 2 Eg [ fcg:

We now present how to generate a set of transactions using
one of the following three rules:

1. With each v 2 V , associate a transaction tv such that

tv = S � fie j v 2 eg:

Let �v be an arbitrary vertex in the complement of e;
that is, �v 2 V �e. Then, the transaction t�v correspond-
ing to �v contains the item ie. tv contains c. This rule
generates jV j transactions.

2. With each e 2 E, associate a new transaction te such
that

te = S � fie; cg:

This rule creates jEj transactions.

3. If jEj < jV j, generate (jV j � jEj + 1) distinct transac-
tions each of which is S � fcg.

Let n denote the number of all the transactions. In what
follows; we call a transaction t positive if t contains c, while
we call t negative otherwise. Let m denote the number of all
positive transactions, and then the number of all negative
transactions is n�m. Note that all the positive transactions
are generated by the �rst rule, and hence jV j = m. On the
other hand, all the negative transactions are constructed by
the second or the third rule. The third rule is introduced
to guarantee that there are more negative transactions than
positive ones; namely,

n�m > m:

Figure 5 presents a way of understanding the above con-
struction of transactions and itemsets from a hypergraph
in a visual manner. Figure 5 (A) shows a hypergraph. Its
hyperedges are fe1; e2; e3; e4; e5; e6g. We regard each hy-
peredge as an itemset and each vertex as a transaction. In
Figure 5(B), black points show positive transactions, and
white points are negative transactions. For instance, black
points enclosed in the hyperedge e1 are transactions that
do not contain ie1, The white point in e1 shows the item-
set S � fie1; icg, which again does not include ie1. On the
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Figure 5: Creating Transactions and Itemsets from

a Hypergraph

other hand, the complement of e1 includes all the transac-
tions that contain ie1. White points that are outside of all
the hyperedges are created by the third rule. In Figure 5
(C), hyperedges e3; e4, and e5 are painted black, and the
remaining eight white points correspond to the transactions
that include all items in fie3; ie4; ie5g.

We will identify a set of hyperedges E0 with the following
itemset I 0:

I
0
= fie j e 2 E

0
g:

Suppose that I ) fcg maximizes the chi-squared value. We
will show that a minimum cover can be created from I by
using the above equation. Put another way, computing the
optimal itemset immediately presents a minimum cover.

Let E� be a minimum cover, and let I� = fie j e 2 E�g. For
instance, in Figure 5 (A), fe3; e4; e5g is a minimum cover,
and its corresponding itemset is fie3; ie4; ie5g. Following the
notations de�ned in De�nition 4.1, let x(I�) denote the num-
ber of transactions that include I�, and let y(I�) note the
number of transaction that contain both I� and fcg. Since
E� is a cover, for any vertex v, there must exist e 2 E�

such that v 2 e. Then, tv does not contain ie, and therefore
tv 6� I�. This implies that no positive transaction includes
I�, and hence y(I�) = 0. For any e 2 E�, te does not include
ie, and te 6� I�. On the other hand, for e 62 E�, te � I�,
and S � I�. Thus, x(I�) = n�m�jE�j. Let k denote jE�j.
Then,

x(I
�
) = n�m� k:

In Figure 5 (C), the eight white points correspond to trans-
actions including fie3; ie4; ie5g that is generated from the

(n, m)

(0, 0) x

y

(n-m+k, k)

(n-m-k, 0)

(m-k, m-k)

(m-k, m)

Figure 6: Stamp Points and NP-hardness

minimum cover fe3; e4; e5g. Thus we have the following
equation:

x(fie3; ie4; ie5g) = 21� 10� 3 = 8:

As we have done in the proof of Theorem 4.1, with each
itemset I, we associate the stamp point (x(I); y(I)). Figure
6 shows all the stamp points. It is easy to see that all the
stamp points are mapped onto the hexagon of (0; 0), (m �

k;m�k), (m+k;m), (n;m), (n�m+k; k), and (n�m�k;0).
I� is associated with (n�m�k; 0). Since chi(x; y) is a convex
function, chi(x; y) is maximized at one of the six vertexes.
From Proposition 4.1, chi(x; y) is minimum at (0; 0) and
(n;m). Since chi(x; y) = chi(n� x;m� y),

chi(m+ k;m) = chi(n�m� k; 0)

chi(m � k;m� k) = chi(n�m+ k; k)

To prove that chi(x; y) is maximum at (n�m � k; 0), it is
su�cient to show that

chi(m+ k;m) > chi(m� k;m� k):

Recall

chi(x; y) =
(ny �mx)2

x(n� x)
�

n

m(n�m)
:

De�ne

g(x; y) =
(ny �mx)2

x(n� x)
;

then it remains to show g(m+ k;m) > g(m� k;m� k).

g(m+ k;m) =
m2(n�m� k)

m+ k

g(m� k;m� k) =
(n �m)2(m� k)

n�m+ k

Then,

g(m+ k;m)� g(m� k;m� k)

=
k2((n�m)2 �m2)

(m+ k)(n�m+ k)
> 0;

because n�m > m. We show that no itemset is associated
with (m+ k;m). Let J be an arbitrary non-empty itemset.
For any ie 2 J , e must contain at least one vertex, say v.
Since tv does not contain ie, tv 6� J , and hence y(J) < m.

Consequently, among all stamp points, (n�m� k; 0) is the
unique point that maximizes chi(x; y). From every itemset
associated with (n�m� k; 0), we can immediately create a
minimum cover.


